
Received 17 October 2024, accepted 24 December 2024, date of publication 30 December 2024, date of current version 3 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3524176

Metaheuristics and Large Language Models Join
Forces: Toward an Integrated Optimization
Approach
CAMILO CHACÓN SARTORI , CHRISTIAN BLUM ,
FILIPPO BISTAFFA , AND GUILLEM RODRÍGUEZ COROMINAS
Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, 08193 Barcelona, Spain

Corresponding author: Camilo Chacón Sartori (cchacon@iiia.csic.es)

This work was supported by MCIN/AEI/10.13039/ 501100011033 under Grant TED2021-129319B-I00 and Grant
PID2022-136787NB-I00.

ABSTRACT Since the rise of Large Language Models (LLMs) a couple of years ago, researchers in
metaheuristics (MHs) have wondered how to use their power in a beneficial way within their algorithms. This
paper introduces a novel approach that leverages LLMs as pattern recognition tools to improve MHs. The
resulting hybrid method, tested in the context of a social network-based combinatorial optimization problem,
outperforms existing state-of-the-art approaches that combine machine learning with MHs regarding the
obtained solution quality. By carefully designing prompts, we demonstrate that the output obtained from
LLMs can be used as problem knowledge, leading to improved results. Lastly, we acknowledge LLMs’
potential drawbacks and limitations and consider it essential to examine them to advance this type of research
further. Our method can be reproduced using a tool available at: https://github.com/camilochs/optipattern.

INDEX TERMS Combinatorial optimization, hybrid algorithm, metaheuristics, large language models.

I. INTRODUCTION
The advent of Large Language Models (LLMs) has altered
the Natural Language Processing (NLP) landscape, empow-
ering professionals across diverse disciplines with their
remarkable ability to generate human-like text. Models like
OpenAI’s GPT [1], Meta’s Llama [2], and Anthropic’s
Claude 3 [3] have become indispensable collaborators in
many peoples’ daily lives; giving rise to innovative products
such as ChatGPT for general use, GitHub Copilot for code
generation, DALL-E 2 for image creation, and a multitude
of voice generators, including OpenAI’s text-to-speech API
and ElevenLabs’s Generative Voice AI. Currently, LLMs
are being experimentally applied across various fields,
yielding mixed results [4]. While some applications seem
questionable, others exhibit spectacular outcomes. One of
the most contentious applications is using LLMs for tasks
necessitating mathematical reasoning. Given LLMs’ inher-

The associate editor coordinating the review of this manuscript and

approving it for publication was Bijoy Chand Chatterjee .

ently probabilistic nature, this application was once deemed
implausible. However, recent findings suggest a shift in
perspective, particularly with LLMs boasting vast parameter
counts [5]. As LLMs continue to scale, new capabilities
emerge [6]. Crucially, these opportunities are contingent upon
the thoughtful design of prompts, which helps mitigate the
risk of LLMs providing irrelevant or inaccurate responses [7].

Whenever a new technology emerges, it is natural to
wonder if it might enhance an existing one. In combi-
natorial optimization, metaheuristics (MHs) [8] have been
established as effective approximate algorithms for tackling
complex, NP-hard problems. While they excel in rapidly
providing good-enough solutions, they depend heavily on
domain-specific knowledge. To address this limitation,
researchers have explored the integration of MHs with
other approaches, including exact algorithms and Machine
Learning (ML).While combiningMHswith exact algorithms
has shown promise [9], a successful integration demands
significant technical expertise. Alternatively, incorporating
ML techniques within MHs can provide valuable problem

2058

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0002-8543-9893
https://orcid.org/0000-0002-1736-3559
https://orcid.org/0000-0003-1658-6125
https://orcid.org/0000-0002-3863-2017
https://orcid.org/0000-0002-9363-9289

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

insights [10], but these approaches often require specialized
know-how or, in the case of Deep Learning (DL), substantial
datasets and computational resources for training [11]. This
paper seeks another direction. We delve into the potential of
LLMs to create a novel hybrid approach that combines the
strengths of MHs and LLMs.

A. OUR CONTRIBUTION
We present a novel approach to enhance MHs performance
utilizing LLMs’ output. Our method diverges from existing
techniques in two key aspects:

• Rather than employing LLMs to generate MHs
(e.g., [12], [13], [14]), our approach leverages them
as pattern recognition tools for problem instance
metrics. This strategy allows for seamless integration
into existing MHs by introducing an additional LLM-
provided parameter.

• Unlike methods that use LLMs as direct optimizers
for natural language-described problems [15], [16],
[17]—a technique limited to simple optimization tasks
due to LLMs’ stochastic nature—our approach tackles
complex optimization challenges by using LLMs to
identify and track pertinent information within the
problem instance.

This dual-faceted approach represents a significant
advancement in the integration of LLMs with metaheuristic
optimization techniques, offering a more robust and versatile
framework for tackling a wide array of optimization
challenges. Thus, we employ LLMs not as an oracle
providing final answers (i.e., it is not an end-to-end approach
according to the classification by Bengio et al. [18]) but as
an intermediate step, assisting in pattern detection within the
metrics’ values (see Figure 2), i.e., it is an hybrid one.
We validate our proposed MH+LLM integration using the

Multi-Hop Influence Maximization in Social Networks prob-
lem, demonstrating improved performance over the current
state-of-the-art approach, which combines MH with deep
learning (DL) [19]. Therefore, we believe this approach can
unlock new possibilities for improving MHs by leveraging
generative AI to tackle complex pattern recognition tasks.

The paper is organized as follows. Section II examines
existing approaches for integrating ML into MHs and
provides an overview of existing research on applying
LLMs in optimization. Section III formally defines the
NP-Hard combinatorial optimization problem that serves
as an example for our study. Our proposed integration
strategy for combining MH and LLMs is presented in
Section IV. The empirical evaluation of our hybrid approach
is detailed in Section V, where we introduce a comprehensive
three-dimensional framework for assessment and provide a
visual analysis of the algorithm’s performance. Section VI
identifies remaining open research questions and discusses
the current limitations of LLMs. Finally, Section VII con-
cludes the paper by summarizing our key findings. Moreover,
future research directions are mentioned.

B. REPRODUCIBILITY
Recognizing the importance of reproducibility in our
field [20], and the potential challenges introduced by
new technologies, we have developed a tool called
OptiPattern (LLM-Powered Pattern Recognition for
Combinatorial Optimization) that automates our hybridiza-
tion method—detailed in Section IV—to ensure greater ease
and accuracy in replication. This tool allows researchers
to input a problem instance, generating the full prompt in
response. Furthermore, by incorporating an LLM API key,
the tool can return node-specific probabilities, which can
then be integrated into the metaheuristic.1 This is essential,
as replicating prompts can be complex and prone to errors.

II. BACKGROUND
A. MACHINE LEARNING FOR ENHANCING
METAHEURISTICS IN COMBINATORIAL OPTIMIZATION
Metaheuristics (MHs) are approximate algorithms that have
proven effective in solving complex optimization problems,
especially combinatorial optimization problems (COPs).
COPs are characterized by discrete variables and a finite
search space. Although MHs have been shown to deliver
good results in reduced computation times, they do not
guarantee finding the optimal solution. Moreover, their
success often hinges on the availability of problem-specific
knowledge. Each problem instance is treated similarly, apply-
ing problem-specific heuristics and (generally) relying on a
stochastic behavior. Along these lines, the community aims
to innovate by integrating techniques from various domains
to improve MHs’ performance and address the limitations
of MH techniques. In particular, hybrid approaches based
on the combination with (1) exact algorithms [9] and (2)
learning techniques [10] have been explored. Currently, the
primary focus has shifted towards the second option. Espe-
cially the integration of machine learning (ML) techniques
has recently resulted in a multitude of different hybrid
approaches. Researchers have explored various strategies
to integrate ML into MHs [10]. In particular, ML might
be used for the following purposes in MHs: algorithm
selection (determining the best MH for a given problem),
fast approximate fitness evaluation in the presence of costly
objective functions, initialization (generating high-quality
initial solutions), and parameter configuration (optimizing
the numerous parameters of an MH, which is crucial for its
performance). These strategies utilize learning techniques to
analyze numerous cases and scenarios, uncovering hidden
patterns in the data. By identifying these patterns, MHs
can extract general principles that apply to a broad range
of situations. This enhances MH’s decision-making process,
increasing their performance and adaptability.2

Beyond classical ML methods (supervised learning:
logistic regression, decision trees, support vector machines;

1https://github.com/camilochs/optipattern
2The reverse integration, which involves enhancingML architectures with

MH techniques, is beyond the scope of this study.

VOLUME 13, 2025 2059

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

unsupervised learning: k-means clustering, principal compo-
nent analysis), there are approaches from several research
subfields within the discipline that have been leveraged and
tailored for their use in MHs. Each subfield is characterized
by its unique methods, strategies, and possibilities. For
instance, deep learning (DL) and reinforcement learning (RL)
are two areas that have proven particularly promising for their
integration with MHs.

DL employs many-layered artificial neural networks to
automatically learn complex data representations, whereas
RL focuses on sequential decision-making to achieve good
results using a trial-and-error learning process. Methods
from both fields have found valuable applications in the
realm of MHs, enhancing their ability to find high-quality
solutions. In fact, a growing body of research demonstrates
this hybrid approach’s success. In the following, we provide
short descriptions of exemplary hybridization approaches
from three different categories:

• MH+ML: In a study by Sun et al. [21], ML techniques
were incorporated into the metaheuristic Ant Colony
Optimization (ACO) to address the orienteering prob-
lem. The authors improved the solution construction
process of ACO by utilizing guided predictions based
on engineered features. In [22], the authors developed
a novel algorithm that combines a metaheuristic with
decision trees to address the classic vehicle routing
problem.

• MH+DL: Examples of this type of hybridization can be
found abundantly in the literature of recent years. For
instance, in [19], the authors presented a novel approach
that uses a Graph Neural Network (GNN) for learning
heuristic information that is then used by a Biased
Random Key Genetic Algorithm (BRKGA) to translate
random keys into solutions to the tackled problem.
Another example concerns [23] where the authors
apply different GNN architectures for parametrizing the
neighbor selection strategy in Tabu Search (TS) and in
Large Neighborhood Search (LNS).

• MH+RL: RL has recently been used in numerous hybrid
approaches. For instance, in [24], the authors devised
a method for learning the heuristic function of beam
search in the context of two variants of the Longest
Common Subsequence (LCS) problems. In [25], the
authors proposed a hybrid approach comprised of an
attention-based model trained with RL and combined
with a more classical optimization method for the for-
mation of collectives of agents in real-world scenarios,
showing that it reaches the performance of state-of-
the-art solutions while being more general. Further-
more, a variable neighborhood search (VNS) based
on Q-learning was devised for a machine scheduling
problem in [26]. Finally, we also mention [27], where
RL is used for adapting the parameters of a BRKGA
during the evolutionary process.

While these hybridization strategies offer potential solu-
tions, they each come with their own set of drawbacks.
For instance, the manual feature selection process in many
MH+ML approaches relies heavily on the expertise of a
specialist. Concerning MH+DL approaches, the system’s
generalization ability might be hindered by lacking a large
and diverse enough dataset. As for MH+RL hybrids, the com-
plexity lies in defining the action space, rewards, and learning
policies in a clear and effective manner. Moreover, all three
approaches share similar technical challenges: the complexity
of replicating models, the time-consuming process of data
collection and preparation, and the computational demands
of generalization, especially for large-scale problems or
complex optimization tasks [11].
To explore innovative methods for enhancing the perfor-

mance of MHs and considering the usefulness and potential
of LLMs, whichwill be discussed in the following subsection,
in this paper, we explore a novel hybrid approach: MH+LLM
(see Section IV). Utilizing the capabilities of LLMs—while
being aware of their limitations—we aim to enhance the
problem-solving capabilities of MHs and open up new
avenues for tackling complex optimization problems.

B. LLMS AS PATTERN RECOGNITION ENGINES
LLMs have breathed new life into the field of NLP. These
high-level language models employ billions of parameters
and exhibit an outstanding ability to learn from data. Mod-
els like GPT-4o (OpenAI),3 Claude-3-Opus (Anthropic),4

Gemini 1.5 (Google),5 Mixtral 8 × 22b (Mistral AI),6

and Command-R+ (Cohere),7 as well as tools built on
top of them—such as ChatGPT, GitHub Copilot, and Bing
Chat—have demonstrated that we are in the presence of a
groundbreaking technology. Unlike previous advancements,
this new wave of AI is no longer limited to experts; instead,
it is accessible to anyone who can grasp its benefits.

LLMs are generative AI models that produce text sequen-
tially, predicting each token based on the previous ones. This
is made possible by the Transformer, a groundbreaking DL
architecture that revolutionized the field of NLP. Proposed by
Vaswani et al. [28], it introduces the concept of self-attention,
allowing the model to contextually select the most suitable
words. The Transformer derives its name from its ability to
transform a set of vectors in a given representation space to a
new set of vectors with identical dimensions but in a different
space. By assigning varying weight values to each input,
the attention mechanism leverages inductive biases related to
sequential data [29]. This architecture also takes advantage
of the capabilities of high-performance hardware due to its
parallelizable nature. As a result, the Transformer generates
words that seamlessly fit the context—although it lacks

3https://openai.com/index/hello-gpt-4o
4https://www.anthropic.com/news/claude-3-family
5https://deepmind.google/technologies/gemini
6https://mistral.ai/news/mixtral-8× 22b
7https://docs.cohere.com/docs/command-r-plus

2060 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

factual verification—marking a significant advancement in
NLP tasks.

LLMs have found uses in various domains, including the
interpretation of complex results like chemical compounds or
images [30], where they provide insights and explanations.
Additionally, LLMs are being applied as autonomous agents
that leverage external tools and resources to accomplish
tasks [31]. Furthermore, these models demonstrate progress
in domains once thought to be out of the reach of their
capabilities, including mathematical reasoning and optimiza-
tion tasks [15]. While there are still numerous obstacles to
overcome [5], these advancements showcase the potential of
these models to address intricate cognitive problems.

Recent research on leveraging LLMs for optimization has
primarily explored two paths: first, formulating optimization
problems within the prompt and requesting the LLM to
solve the described problem, typically for straightforward
optimization tasks [15], [16], [17]; and second, automating
code generation to enhance optimization algorithms [12],
[13], [14]. While both strategies are effective in leveraging
LLMs to address certain weaknesses of MHs, they fail to
account for the significance of problem instances, as different
instances can produce varying results in an MH. Our
approach seeks to tackle this challenge, functioning as a
complementary tool rather than a rival to current strategies.
Thus, we present a novel integration that utilizes LLMs to
enhance the effectiveness of metaheuristic search processes.
Although a recent study has shown that LLMs can detect
patterns across various tasks [32], no method has yet been
developed that employs LLMs as pattern recognition engines
in combinatorial optimization problems. Acknowledging the
challenges related to LLMs (discussed in the subsequent
Section II-B1), we identify numerous opportunities for
progress in this area (see Section IV).

1) OBSTACLES AND OPPORTUNITIES
LLMs are an emerging technology that is still evolving.
Despite demonstrating usefulness across various applica-
tions, as seen above, we believe that our research has
mitigated two key risks associated with LLMs:

1) Training these models requires an immense amount of
diverse data, from social media posts to books, and an
equally vast amount of computing power. As a result,
the leaders in the LLM industry tend to be well-funded
private companies with significant resources and high
valuations. This creates a high barrier to entry for
startups or under-funded research centers, which often
lack the necessary infrastructure to compete directly
with these powerful players. To reduce these risks,
a dual strategy can be implemented. On one side,
this involves using more compact, open-source LLMs,
which may, however, result in lower-quality outputs.
On the other side, this entails using proprietary LLMs
as software-as-a-service to end-users, which incurs
financial expenses. For this research, we employed a

mix of both strategies, highlighting their respective
benefits and drawbacks.

2) LLMs have no built-in understanding of the world,
as they cannot directly experience or ‘‘simulate’’ our
environment. This is unlike humans, who constantly
perceive information, be it sensory, visual, or auditory.
In contrast, LLM operation depends on the data with
which they are trained. Consequently, if the data is
not meticulously selected by humans, the model’s
predictions may be unreliable or even generate false
information, a phenomenon known as ‘‘hallucinations’’
in AI discourse.8 We mitigated the problem of halluci-
nations with a special focus on prompt design. It has
been observed that ambiguous prompts can lead to
inconsistent results, with the same prompt potentially
yielding different responses each time it is executed.
As LLMs have evolved and increased in size, it has
become evident that altering the prompt strategy can
significantly improve the quality of the responses. This
discovery has opened up new possibilities, enabling
LLMs to tackle tasks that previously yielded negative
or untested results. Carefully designing and adjusting
prompts can improve the reliability and performance
of LLMs [34]. This article focuses on creating prompts
that produce desired outcomes.

III. PROBLEM DEFINITION
In this section, we provide the definition of the optimization
problem we consider as an example in this paper, while in
Section IV, we present our hybrid optimization approach. The
considered optimization problem is from the realm of social
networks. In fact, social network problems often serve as an
interesting experimental laboratory for testing optimization
techniques since they can be modeled as combinatorial
problems based on directed graphs that become highly
complex as the instance size grows.

Specifically, we consider Multi-Hop Influence Maxi-
mization, a social network problem proven NP-hard by
Ni et al. [35] and Basuchowdhuri et al. [36]. In the literature,
this problem has been studied using both metaheuristics and a
state-of-the-art combination of a BRKGA with deep learning
(DL) [19], which gives us a point of comparison.

A. MULTI-HOP INFLUENCE MAXIMIZATION IN SOCIAL
NETWORKS
Many optimization problems in social networks can be
formalized by modeling the social network as a directed
graph G = (V ,A), where V represents the set of nodes and
A represents the set of directed arcs. This is also the case

8The term ‘‘hallucination’’ in the context of LLMs was derived from the
concept of ‘‘AI hallucination,’’ which refers to incorrect responses generated
by AI systems. In fact, this term was adopted due to the tendency of humans
to anthropomorphize technology, attributing human qualities to it. As Floridi
and Nobre have recently shown [33], such a tendency is common with
disruptive technologies. It has also been shown that, as we become more
familiar with these technologies, the tendency to anthropomorphize should
decrease over time.

VOLUME 13, 2025 2061

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 1. Multi-hop influence process. The given directed graph consists
of 11 nodes and 12 arcs, and the task is to solve the k-dDSP with k = 2.
The example solution U consists of two nodes: v4 and v5 (colored in
green). The bottom row illustrates the concept of d -hop coverage: when
d = 1, nodes v3, v7, v6 are 1-hop covered by U ; when d = 2, nodes
v2, v3, v7, v8, v6, v11 are 2-hop covered by U ; and when d = 3, all
remaining nodes in the graph are 3-hop covered by U .

of the specific multi-hop influence maximization problem
addressed in this paper, referred to as the k-d-Dominating Set
Problem (k-dDSP).

The most crucial concept in this context is the influence
Id (u) ⊆ V of a node u ∈ V , which is determined by two
factors:

1) Parameter d ≥ 1, which is an input to the problem and
represents the maximum distance of influence.

2) A distance measure dist(u, v) between nodes u and v.
In this paper, dist(u, v) is defined as the length (in terms
of the number of arcs) of the shortest directed path from
u to v in G.

Based on these factors, we can define the influence of a node
u as follows:

Id (u) := {v ∈ V | dist(u, v) ≤ d} (1)

In other words, Id (u) represents the set of all nodes in G that
can be reached from u via a directed path with at most d
arcs. We say that u influences (or covers) all nodes in Id (u).
This definition can be naturally extended to sets of nodes as
follows:

Id (U) :=
⋃
u∈U

Id (u) ∀U ⊆ V (2)

That is, Id (U) represents the set of all nodes in G that are
influenced by at least one node from the set U .
Valid solutions to the k-dDSP are all sets U ⊆ V such

that |U | ≤ k , meaning that any valid solution can contain
at most k nodes. The objective of the k-dDSP is to find a
valid solution U∗ ⊆ V such that |Id (U∗)| ≥ |Id (U)| for all
valid solutionsU to the problem. In other words, the objective
function value of a valid solution U is |Id (U)|. Formally, the

k-d DSP can be stated as follows:

max
U⊆V

|Id (U)|

s.t. |U | ≤ k (3)

For an intuitive explanation of k-dDSP, see the toy example
in Figure 1.

IV. INTEGRATION OF LLM OUTPUT INTO A
METAHEURISTIC
Figure 2 depicts the framework of our proposed MH+LLM
integration, comprising three automatic sequential steps:

1) Prompt generation and execution by an LLM. We
begin by phrasing the k-dDSP in natural text and
creating a small random graph with a high-quality
solution. Next, we calculate five key metrics for
each node of the graph, which enables the LLM to
determine the most relevant metrics for this problem.
We then compute the same metrics for a second
(larger) graph in which we want to solve the k-
dDSP problem. This graph is henceforth called the
evaluation graph. Using the generated data, we design
a prompt and ask the LLM to provide parameters
for calculating the importance of each node in the
evaluation graph. In essence, we leverage the LLM as
a pattern recognition engine to identify correlations
between node metrics and node importance in the
context of the k-dDSP.

2) Calculate probabilities for each node of the evalu-
ation graph. As explained in detail below, the LLM
provides values for ten parameters that can be used to
compute the probability of each node of the evaluation
graph to form part of an optimal k-dDSP solution.
We expect this information to offer excellent guidance
to a MH.

3) Utilizing the probabilities (guidance) within a MH.
Since the MH we use in this work is a BRKGA,
we incorporate the probabilities calculated based on the
LLM output into the decoder that translates random
keys into valid solutions to the tackled optimization
problem.

In what follows, these three steps are detailed in corre-
sponding subsections.

A. PROMPT ENGINEERING
A prompt is an instruction provided as input to an LLM.
The design of a prompt can greatly influence the quality of
the LLMs’ responses [6], [7]. Also, the specific response
can vary depending on the LLM used. From the available
prompt design techniques, we have opted for one-shot
learning [37], also sometimes called few(1)-shot learning.
According to Chen’s findings [38], tabular data reasoning
can achieve good results with a single example, eliminating
the need for additional examples or fine-tuning. This method
involves furnishing the LLM with an example to facilitate

2062 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 2. An overview of our approach to integrating MHs and LLMs: We employ LLMs to analyze problem instances and uncover hidden patterns. The
patterns are then converted into useful information that guides the MH in its search for high-quality solutions.

pattern recognition in the response instructions that are to be
requested.

1) DEFINITION
The prompt we have designed consists of four tags, defined
as follows:

P := prompt(Tag1, Tag2, Tag3, Tag4) (4)

where
• Tag1 is the [PROBLEM] tag,
• Tag2 is the [EXAMPLE GRAPH] tag,
• Tag3 is the [EVALUATION GRAPH] tag, and
• Tag4 is the [RULES ANSWERING] tag.

Hereby, the [PROBLEM] tag contains the description of the k-
dDSP. Moreover, the example graph information is provided
in the [EXAMPLE GRAPH] tag. Hereby, the example graph
consists of 100 nodes, each characterized by the values of five
metrics: in-degree, out-degree, closeness, betweenness,
and pagerank.9 In particular, these values are henceforth
denoted by

mexi,1,m
ex
i,2,m

ex
i,3,m

ex
i,4,m

ex
i,5

for all vi of the example graph. (5)

Hereby, mexi,1 is the value corresponding to metric in-degree,
mexi,2 corresponds to out-degree, etc. Note also that the
metric values are normalized to the range [0, 1]. Furthermore,
the high-quality k-dDSP solution of the example graph is
computed using the pure BRKGA algorithm, which we

9We selected these five metrics based on our understanding of the k-dDSP
problem. However, in future work, leveraging the extensive knowledge
LLMs possess from academic sources, we plan to use them to guide the
selection of metrics for each specific problem. This could represent the
extension of our method.

adopted from our earlier work [19]. The solution is encoded
as a vector of 32 nodes, separated by commas, corresponding
to the k-dDSP parameter k = 32.
Next, the [EVALUATION GRAPH] tag contains the eval-

uation graph for which the k-dDSP must be solved. Each
node of this graph is described by the values of the same five
metrics described above. These evaluation graph values are
henceforth denoted by

mevali,1 ,mevali,2 ,mevali,3 ,mevali,4 ,mevali,5

for all vi of the evaluation graph. (6)

Finally, the [RULES ANSWERING] tag specifies the details
of the request to the LLM, which will be elaborated on in
Section IV-A2.
After the prompt P is formulated, it is utilized by invoking

the execute function, which takes three parameters: the
prompt P, the selected LLM , and 2, representing a set of
values for the configuration parameters of the LLM . This
results in the corresponding LLM output:

Output := execute(P,LLM , 2) (7)

Specifically, 2 contains values for exactly two hyperpa-
rameters, regardless of the utilized LLM. The first, known as
temperature, is a value between 0 and 1 that measures the
model’s response uncertainty, with lower values indicating a
more deterministic output. While ‘‘more deterministic’’ does
not imply that the LLM will generate identical responses to
the same prompt every time, it does enhance the stability of
the outputs, making it easier to replicate experiments [39].

VOLUME 13, 2025 2063

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

Therefore, we set the temperature to 0.10 The second hyper-
parameter is the maximum number of output tokens,
which we have set to a moderate 1000 tokens. This choice
is based on the prompt design, which consistently yields
relevant outputs regardless of the evaluation graph’s size,
ensuring that the quality of the results is not compromised
by a smaller token limit.

2) PROMPT STRUCTURE
Effective prompts are generally those with few language
ambiguities. To achieve this, the four unique opening and
closing tags mentioned in the previous section provide
structure and coherence. We will now clarify the syntactic
structure of each of these tags. A complete example of a
prompt, along with each tag, can be found in Figure 3.

1) Problem description. The prompt starts by providing
a concise definition of the k-dDSP utilizing LaTeX
notation within the [PROBLEM] tag; see the top right
of Figure 3.

2) Example Graph. The [EXAMPLE GRAPH] tag, as the
name suggests, provides information about the example
graph. Nestled within this tag are two additional tags:
[DATA], encompassing the metric values of each node
of the example graph, and [ANSWER], which provides
a high-quality solution for the given graph.
• [DATA] tag: A (directed) random graph with
100 nodes produced with the Erdös–Rényi
model [40] was chosen as an example graph.
The edge probability of the graph was 0.05.
Subsequently, five before-mentioned metrics were
calculated for each of the 100 nodes and
incorporated into the prompt in a tabular data
format, with rows and columns separated by
commas. Each row corresponds to a node ID,
while the columns represent the respective metric
values for that particular node. The metric values
are presented in scientific numerical notation to
minimize token usage. The rationale behind this
decision is discussed in the context of the empirical
results; see Section V.

• [ANSWER] tag: The solution to the example
graph is computed using the BRKGA algorithm
from [19]. However, note that this solution (which
is not necessarily optimal) could potentially have
been achieved through alternative means, such
as employing a different metaheuristic or solving
the problem via an exact method. The rationale
behind including a high-quality solution is our
expectation that—given the nodes belonging to a
presumably high-quality solution—the LLM will
be able to discern which metrics are more crucial

10For text generation and paraphrasing tasks, it’s recommended to
increase the temperature. This adjustment promotes creativity, which is
a desirable characteristic in these contexts. These applications differ from
using the LLM as a pattern recognition tool, where consistent and stable
outputs are preferable.

than others and how the metric values of selected
nodes interrelate.

3) Evaluation Graph. The [EVALUATION GRAPH] tag,
much like the [EXAMPLE GRAPH] tag, utilizes a nested
[DATA] tag to store the values of the five metrics for
every node. However, we obviously do not provide any
solution for the evaluation graph. This is because the
objective is to request information from the LLM on
the probability of nodes from the evaluation graph to
pertain to an optimal solution.

4) Rules Answering. The [RULES ANSWERING] tag is
crucial as it ties together all the information provided in
the previous tags. In this part of the prompt, an equation
is presented to the LLM to calculate the probability of
each node of the evaluation graph to form part of an
optimal solution. The equation requires 10 parameters:
5 alpha parameters and 5 beta parameters, which will
be explained in more detail in Section IV-B. These
parameters serve to assign weights to the metrics and
correct potential errors. The LLM infers the values
of these parameters by analyzing the metrics in the
[EVALUATION GRAPH] tag and using the metrics and
the solution from the [EXAMPLE GRAPH] tag as a
guide.

For optimal prompt construction, we recommend using
our OptiPattern tool, which generates the prompt
automatically.

B. LLM OUTPUT
As described before, a prompt P provides the values of
the following five metrics for each node of the example
graph and the evaluation graph: in-degree, out-degree,
closeness, betweenness, and pagerank. It is assumed that
the most important metric for addressing the k-dDSP is
the out-degree, that is, the number of neighbors that can
be reached from a node via directed arcs. A node with a
higher out-degree is generally more likely to form part of
high-quality solutions. However, we assume that there are
additional metrics (among the other four metrics) that might
contribute valuable information. Consequently, we anticipate
that the LLM will be able to identify this. To identify
patterns in the values provided by the metrics, the LLM is
requested (by means of the [RULES ANSWERING] tag) to
return values for two sets of five parameters (one for each
metric, in the order as given above), resulting in ten values.
More specifically, upon executing a prompt P, the chosen
LLM produces a set Output (see Eq. (7)) which is as follows:

Output = {α1, . . . , α5, β1, . . . , β5} (8)

The first five of these values are henceforth called alpha
values, while the last five values are named beta values.
The heart concept of the proposed prompt is centered on the
meaning of these values and how they are utilized.
• alpha values: These are weights that indicate the
influence of each metric. The total sum of all alpha

2064 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 3. An example of a prompt and the corresponding LLM response. The prompt includes the problem definition, a graph example with node
metrics and a high-quality solution, an evaluation graph, and instructions for the LLM for producing the output. Based on the patterns identified in the
evaluation graph, the LLM provides the importance of each metric, represented by the set of alpha and beta values.

values should be equal to one (
∑5

i=1 αi = 1), and each
alpha value can be unique. In other words, the alpha
value 0 < αi < 1 reflects the relative significance of
the i-th metric (in the order as mentioned above).

• beta values: These five values are adjustment (or
correction) parameters. Unlike the alpha values, beta
values 0 < βi < 1 are independent of each other.
Moreover, beta values do not represent relative weights

VOLUME 13, 2025 2065

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

among themetrics. They rather indicate the best possible
value of a node regarding a metric. This allows the LLM
to identify where the best values are found with respect
to their range [0, 1].

Based on these values from the LLM output, the probabil-
ity for a node vj of the evaluation graph is determined using
the following formula:

pLLM(vj) := σ

(5∑
i=1

αi · (1− (βi − mevalj,i))
)

(9)

Note that this formula introduces non-linearity into the
node probabilities by applying the sigmoid function σ , which
enables a more nuanced representation of the probability
space.11

As shown in Figure 3, our proposed prompt thoroughly
explains the alpha and beta values to the LLM, along with
Eq. 9. By giving the LLM a clear understanding of the context
surrounding the alpha and beta values, we simply ask the
LLM to provide the corresponding values for the evaluation
graph.

C. USING LLM OUTPUT TO GUIDE A METAHEURISTIC
In this section, we first describe the metaheuristic considered
to test the quality of the LLM output. Subsequently, the way
of incorporating the probability values into the metaheuristic
is outlined.

1) THE CONSIDERED METAHEURISTIC: A BRKGA
The chosen metaheuristic is a so-called Biased Random Key
Genetic Algorithm (BRKGA) designed for solving the k-d
DSP in [19].12 In fact, two algorithm variants were proposed
in [19]: (1) a pure BRKGA variant and (2) an algorithm
variant that makes use of a hand-designed deep learning
framework for biasing the BRKGA. This will allow us to
compare our proposal properly to existing algorithm versions.

In general, a BRKGA is problem-independent because
it works with populations of individuals that are vectors
of real numbers (random keys). The problem-dependent
part of each BRKGA deals with how individuals are
translated into solutions to the tackled problem. The
problem-independent pseudocode of BRKGA is provided in
Algorithm 1.

The algorithm begins by calling GenerateInitialPopula-
tion(psize, seed) to create a population P of psize individuals.
If seed = 0, all individuals are randomly generated, with each
π ∈ P being a vector of length |V | (where V is the set of
nodes from the input graph). The value at position i of π ,
π (i), is randomly chosen from [0, 1] for all i = 1, . . . , |V |.
If seed = 1, psize−1 individuals are randomly generated, and
the last individual is obtained by setting π (i) := 0.5 for all

11The sigmoid function has been used for many purposes in neural
networks. But also in metaheuristics, for example, for significantly
accelerating the convergence of a genetic algorithm [41].

12BRKGA’s are well-known GA variants, mostly for solving combinato-
rial optimization problems.

Algorithm 1 The Pseudocode of BRKGA
Require: a directed graph G = (V ,E)
Ensure: values for parameters psize, pe, pm, probelite, seed
1: P← GENERATEINITIALPOPULATION(psize, seed)
2: EVALUATE(P) ▷ problem-dependent part (greedy)
3: while computation time limit not reached do
4: Pe← ELITESOLUTIONS(P, pe)
5: Pm← MUTANTS(P, pm)
6: Pc← CROSSOVER(P, pe, probelite)
7: EVALUATE(Pm ∪ Pc) ▷ problem-dependent part

(greedy)
8: P← Pe ∪ Pm ∪ Pc
9: end while
10: return Best solution in P

i = 1, . . . , |V |. The initial population’s individuals are then
evaluated by transforming each individual π ∈ P into a valid
solution Uπ ⊂ V to the k-dDSP, with the value f (π) defined
as f (π) := |Uπ |. The transformation process is discussed
later.

At each iteration, the algorithm performs the following
operations:

1) The best max{⌊pe ·psize⌋, 1} individuals are copied from
P to Pe using EliteSolutions(P, pe).

2) A set of max{⌊pm · psize⌋, 1} mutants are generated
by function Mutants(P, pm) and stored in Pm. These
mutants are random individuals generated the same
way as those from the initial population.

3) A set of psize−|Pe|− |Pm| individuals are generated by
crossover using Crossover(P, pe, probelite) and stored
in Pc. The crossover, which involves combining two
solutions, serves as the mechanism that enhances
the search process, concentrating on transferring the
superior traits of parents to their offspring.

The evaluation of an individual (see lines 2 and 7 of
Algorithm 1) is the crucial problem-dependent aspect of the
BRKGA algorithm from [19]. This evaluation function—
often termed the decoder—utilizes a straightforward greedy
heuristic. The heuristic is based on the notion that nodes with
a higher out-degree—that is, more neighbors—are likely to
yield a higher influence.

For a node vj ∈ V , the set of neighbors, N (vj), comprises
nodes reachable via a directed arc from vj: N (vj) = {vi ∈
V | (vj, vi) ∈ A}. The greedy value φ(vj) for each vj ∈ V is
calculated as:

φ(vj) := |N (vj)| · π (j) (10)

In other words, in this equation, the greedy value of a
node vj is determined by multiplying its out-degree with
the corresponding numerical value from the individual being
translated into a solution. The final solution, Uπ , is obtained
by selecting the k nodes with the highest greedy values.
The following will modify the greedy function φ to create

our hybrid algorithm.

2066 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

2) HYBRID ALGORITHM
The proposed hybrid algorithm—referred to as
BRKGA+LLM—begins with two offline steps. Given an
evaluation graph G = (V ,A), a prompt is generated as
outlined in the previous section and sent to an LLM. Based on
the alpha and beta values obtained from the LLM’s response,
the probability pLLM(vj) for each node vj ∈ V is determined
using Eq. (9). Next, the original greedy function φ() from
Eq. (10) is substituted with a modified version that integrates
the node probabilities derived from Eq. (9):

φInfluenceLLM (vj) := |N (vj)| · π (j) · pLLM(vj) ∀vj ∈ V (11)

We hypothesize that with suitable predictions from the
LLM, the algorithm can be guided/biased to explore more
promising areas of the search space. These areas are believed
to contain high-quality solutions that the BRKGA would
have been unable to discover on their own without the
guidance of these predictions. In other words, using an LLM
to discover patterns inmetric values (see Section IV-A), rather
than relying solely on the out-degree, might enhance the
algorithm’s performance.

V. EMPIRICAL EVALUATION
This section presents empirical evidence demonstrating the
benefits of integrating MHs and LLMs. The following
algorithm variants are considered for the comparison:
• BRKGA: the pure BRKGA variant already published
in [19] and described above in Section IV-C1.

• BRKGA+FC: the BRKGA hybridized with a hand-
designed GNN called FastCover (FC) that was used
to derive the probability values (last term of Eq. (11))
in [19].

• BRKGA+LLM: the BRKGA enhanced with LLM output
as described in the previous section.

Note that both BRKGA and BRKGA+FC underwent a general
parameter tuning in [19] depending on the value of k . The
well-known irace tool [42] was used for this purpose.
In this work, we adopt the corresponding parameter settings
of BRKGA for BRKGA+LLM. In this way, we can be sure that
any difference in their performance is caused by the guidance
of the probabilities computed from the LLM outputs. In any
case, a specific tuning of BRKGA+LLM could only further
improve its results.

Apart from comparing the three approaches mentioned
above, we show results for different LLMs and provide evi-
dence for the quality of LLMoutput. Additionally, we support
our analysis with a visual examination, providing additional
insight into why the hybrid BRKGA+LLM outperforms the
other algorithm variants.

A. EXPERIMENTAL SETUP
The BRKGA was implemented in C++, whereas the prompt
construction process, which entails extracting metrics from
graph instances, was conducted using Python 3.11. Regarding
the choice of LLMs, we utilized two proprietary language

models, GPT-4o and Claude-3-Opus, as well as two open-
source models, Command-R+ and Mixtral-8× 22b-Instruct-
v0.1. We selected these models based on the Chatbot
Arena—a platform developed by LMSYS members and UC
Berkeley SkyLab researchers—which provides an Arena
Leaderboard,13 a community-driven ranking system for
LLMs [43].14 Table 1 presents a comprehensive overview
of the models, including their ranking in the Chatbot
Arena Leaderboard (as of May 2024), corresponding version
numbers, licenses, maximum context windows, and crucially,
the test environment employed for each model.

1) EXECUTION ENVIRONMENT
We utilized the OpenRouter API15 to execute prompts in their
corresponding LLMs, except for Claude-3-Opus, which we
used through the Anthropic API (see Table 1). Finally, all
experiments involving the three BRKGA variants were con-
ducted on a high-performance computing cluster comprising
machines powered by Intel Xeon CPU 5670 processors with
12 cores running at 2.933 GHz and a minimum of 32 GB of
RAM.

2) DATASET
Our evaluation is based on two categories of k-dDSP
instances (evaluation graphs). The first consists of rather
small, synthetic social network graphs with 500 and 1000
nodes, generated using three configuration methods devel-
oped by Nettleton [44]. The corresponding graph generator
requires four real-valued parameters, whose values are
reflected by the instance names.16 The second instance set
comprises four real-world social network graph instances
obtained from the well-established SNAP (Stanford Network
Analysis Project) repository [45]. Moreover, note that the
k-dDSP can be solved in each graph for different values
of d and k . In this work we solved all evaluation graphs
with d ∈ {1, 2, 3} and k ∈ {32, 64, 128}. All datasets
(synthetic and real), prompts, and results can be found in the
supplementary material/ folder in the repository:
https://github.com/camilochs/optipattern.

Restrictions. The size of the graphs poses a constraint on
the prompts we have designed for the LLMs, which is limited
by two factors:

13https://lmarena.ai
14Please be aware that our experiments took place between February and

May 2024, and the LLMs ranking classification in Chatbot Arena may have
changed by the time of reading.

15https://openrouter.ai
16The instance names are obtained by a concatenation of the utilized

parameter values: examples are 0.4-0.15-0.15-0.3, 0.3-0.0-0.3-0.4, and
0.2-0.0-0.3-0.5. The parameters labeled a, b, c, and d , respectively, define
communities weights (a and d) and link weights between communities (b
and c), a + b + c + d ≈ 1. These parameters influence the topology of the
network, specifically the total number of connections and the density.

VOLUME 13, 2025 2067

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

TABLE 1. Summary of the assessed LLMs, which have been used via the OpenRouter API. This is except for Claude-3-Opus, the first LLM considered.
At that point, we had yet to become familiarized with OpenRouter.

TABLE 2. Number of input/output tokens and the associated cost of
processing the input prompts concerning Claude-3-Opus. The costs
correspond to March 2024.

1) The maximum context window of LLMs is still
relatively small.17 For instance, the largest evaluation
graph we use, soc-wiki-elec, results in an input prompt
size of 181 719 tokens, which is close to the 200 000
tokens limit of Claude-3-Opus [3], the LLM which
offers the currently largest context window.

2) The cost of processing larger instances is prohibitively
high. For example, executing the prompt regarding
the soc-wiki-elec evaluation graph on Claude-3-Opus
exceeds e2.5.

Table 2 provides a detailed breakdown of the constraints
for the largest evaluation graphs considered in this work.
Although these limitations currently restrict us to testing
with smaller instances, we anticipate that this constraint will
soon be alleviated as the maximum context window increases
and processing costs decrease (see Section VI for more
information on this).

B. ANALYSIS OF LLM OUTPUT
This section aims to validate the outputs of the LLMs
and their usefulness for utilizing them as guidance within
the BRKGA algorithm. The aim is to demonstrate that
they are not arbitrary or devoid of significance. We have
conducted three sets of experiments to achieve this, aiming at
different aspects. Figure 4 shows the custom-designed, three-

17The maximum context window of an LLM sets the maximum amount
of text it can process simultaneously when generating a response. This
constraint determines the scope of contextual information the LLM can draw
upon when answering a question or completing a task. The response quality
will likely degrade if the input prompt exceeds this limit. Given that our
prompt design requires each metric for each node to be equally important,
the LLM needs to consider as much context as possible to deliver reasonable
and trustworthy results.

dimensional experimental framework developed specifically
for this evaluation.18

Before starting with the main experimental evaluation,
we must choose the most suitable LLM for the considered
task. For this purpose, we produced all prompts concerning
the six synthetic graphs from the dataset (as described
before) for all considered combinations of d ∈ {1, 2, 3}
and k ∈ {32, 64, 128}. These prompts were fed into the
following LLMs: GPT-4o, Claude-3-Opus, Command-R+,
andMixtral-8×22b-Instruct-v0.1. The obtained probabilities
were then directly used to produce solutions containing the
k nodes with the largest probability values. The same was
done concerning metric out-degree. That is, solutions were
produced that consist of the k nodes with the highest out-
degree values. The results shown in Table 3 allow us to
make the following observations. First, although no LLM
always outperforms the other LLMs, Claude-3-Opus shows
advantages over the other LLMs, especially for increasing
values of k . When comparing the results obtained with out-
degree (the most popular greedy heuristic for the k-dDSP) to
the results obtained with Claude-3-Opus, we can observe that
out-degree seems to work slightly better for k = 32, while
the opposite is the case for k = 128. Based on these results,
we use Claude-3-Opus for the remainder of our experiments.

1) DIMENSION 1 OF THE EVALUATION FRAMEWORK:
RESULT QUALITY
In the first set of experiments, we decided to compare the
pure BRKGA approach with BRKGA+LLM in the context of
the six synthetic graphs (and for all combinations of d ∈
{1, 2, 3} and k ∈ {32, 64, 128}). Both algorithms were
applied 10 times to each case, with a computation time limit
of 900 CPU seconds per run. The results, which are shown
in Table 4, clearly show that BRKGA+LLM outperforms
the pure BRKGA algorithm most of the time. Considerable
improvements can be observed in the context of the last
graph; see instance 0.2-0.0-0.3-0.5 with 1000 nodes and
8000 arcs. Only in three cases, the result obtained by
BRKGA+LLM is slightly inferior to the one of BRKGA. While

18Future research could expand the framework’s dimensions to better
justify LLMs’ response quality and integration with MHs and to address
unexplored aspects.

2068 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 4. A comprehensive evaluation framework was used to assess the usefulness of integrating MHs with LLMs for solving combinatorial
optimization problems (COPs) across the three dimensions shown in the graphic.

TABLE 3. Solution qualities obtained when turning the probabilities computed based on the LLM’s output directly into solutions. In addition, the same is
done for the out-degree metric. Considered LLMs are GPT-4o, Claude-3-Opus, Command-R+, and Mixtral-8 × 22b-Instruct-v0.1. The six synthetic graphs
are chosen as a test bed. Green cells highlight the best LLM results, while gray cells indicate the top out-degree metric results.

these results are promising, it is important to recognize that
they are based on relatively small instances.

In the next set of experiments, we applied the
BRKGA+FC [19], in addition to BRKGA and BRKGA+LLM,
to the four larger real-world social networks. Remember that

BRKGA+FC is a hybrid approach that uses a hand-crafted
GNN approach for biasing the search process of BRKGA.
The results are shown—again for each combination of
d ∈ {1, 2, 3} and k ∈ {32, 64, 128}—in Table 5. The
computation time limit for the three approaches was 900 CPU

VOLUME 13, 2025 2069

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

TABLE 4. Comparison of the pure BRKGA with BRKGA+LLM on the six synthetic social networks. For each network, the algorithms were applied for each
combination of d ∈ {1, 2, 3} and k ∈ {32, 64, 128}. Average results over 10 algorithm runs are shown. Green cells indicate the best quality metrics
results—higher values are better in this maximization problem.

TABLE 5. Numerical comparison of three algorithms—BRKGA, BRKGA+FC (results extracted from [19]), and our hybrid approach BRKGA+LLM—on a total of
four real-world social network instances. For each network, the algorithms were applied 10 times to each combination of d ∈ {1, 2, 3} and
k ∈ {32, 64, 128}. Green cells indicate the best quality metrics results—higher values are better in this maximization problem.

seconds, as in the previously outlined experiments.Moreover,
the numbers in the tables are averages over 10 algorithm
runs. The results show that BRKGA+LLM outperforms both
approaches, with higher margins than those observed in the
context of smaller synthetic networks. This holds especially
for a growing value of k . This is interesting as the prompts
only contained an example solution for k = 32. This indicates
the LLM’s ability to uncover meaningful patterns in the
example graph, respectively, in the solution provided in the
prompts.

Finally, we aimed to test how meaningful the LLM output
really is. For this purpose, we produced two additional
variants of BRKGA+LLM: the one called static is obtained
by replacing the LLM output with probabilities obtained
by random alpha and beta values. The second one, called
dynamic, is a similar variant in which the LLM output
is replaced with probabilities re-computed at each iteration
based on newly determined random alpha and beta values.
All three algorithm variants were applied 10 times to each
of the four real-world social networks for each combination

2070 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

of d ∈ {1, 2, 3} and k ∈ {32, 64, 128}. The results averaged
over the 10 runs are shown in Table 6. They clearly indicate
that guidance by the LLM output is much more useful than
random guidance.

We can conclude that guidance by LLM output clearly
leads to an improved algorithm and results. In other words,
these experiments demonstrate that an LLM can provide
valuable information to inform a metaheuristic. In fact,
we would expect an even higher benefit through LLM
guidance in the context of even larger networks. However, this
is currently not possible due to the reasons outlined before.

2) DIMENSION 2 OF THE EVALUATION FRAMEWORK:
ALTERNATIVE TECHNIQUES FOR GUIDING MHS
To assess the reliability of the LLM output in an alternative
way, we decided to compare BRKGA+LLM to an algorithm
variant in which the alpha and beta values are obtained by
an explicit parameter tuning procedure using the irace
tool [42]. This algorithm variant will henceforth be called
BRKGA+irace. In particular, for each of the four large
social networks—mentioned in Section V-A2 and already
used, for example, in Table 6—we applied a tuning procedure
for obtaining well-working alpha and beta values in the
following way. First, for every combination of d ∈ {1, 2, 3}
and k ∈ {32, 64, 128} a training instance was generated.
Second, iracewas applied with a budget of 1000 algorithm
runs, using (as before) a computation time limit of 900 CPU
seconds per run. After obtaining the final alpha and beta
values from irace for each network, BRKGA+irace was
applied under the same conditions as BRKGA+LLM to each
of the four problem instances. The results are shown in
Table 8. We observe that while BRKGA+irace outperforms
BRKGA+LLM in the soc-hamsterster and soc-wiki-elec
instances, the opposite is the case for the sign-bitcoinotc
instance. In the soc-advogato instance, performance is
similar except for d = 3, whereBRKGA+irace shows better
results. For putting these results into perspective, consider
that the alpha and beta values of BRKGA+irace were
obtained through a specific tuning process that required sig-
nificant computational time—approximately 59460 minutes
(single-thread) or 2696.7 minutes (parallel jobs on SLURM)
for the sum of the four problem instances (see Table 7).19

In contrast, the LLM output (Claude-3-Opus) is obtained in
just 5.3 minutes via an API call over HTTP. While this is
not a fully fair comparison due to the different hardware
setups, the substantial difference in runtime highlights the
efficiency of the LLM-based approach. In some scenarios,
it may be preferable to pay for API access rather than
maintain dedicated servers that require significantly more
time to achieve comparable results.

We used Pearson’s correlation coefficient [46] to identify
relationships between the alpha and beta parameters obtained
from irace and those from the LLM output (see the

19The irace logs can be found in the supplementary material/
folder in the repository.

rows labeled with ρirace,LLM in Table 9). A value close
to −1 indicates a negative correlation, meaning that when
one value increases, the other decreases. A value close to
+1 indicates a positive correlation, where both values tend
to move together. A value close to 0 means there is no clear
relationship between the two series. Our observations are as
follows:

1) In the instances where BRKGA+irace clearly
dominates—soc-hamsterster and soc-wiki-elec—
there is a moderate to strong negative correlation
concerning the alpha values. However, concerning the
beta values, there is no clear relationship in the context
of soc-hamsterster, whereas there is a negative
correlation in the context of soc-wiki-elec. Thus,
negative correlations are predominant. This suggests
that the values determined byirace and the LLM tend
tomove in opposite directions, and based on the results,
the direction chosen by irace appears to be the better
one.

2) In contrast, in the sign-bitcoinotc instance, where
BRKGA+LLM outperforms BRKGA+irace, there is
no correlation between the two methods concerning
the alpha values. The LLM’s prediction is unique and
unrelated to irace’s, demonstrating that the LLM
could find good results that irace missed.

3) The results for the soc-advogato instance are incon-
clusive since, for each k ∈ {32, 64, 128}, there is
no definitive winner between BRKGA+irace and
BRKGA+LLM. A negative correlation concerning the
alpha values but a positive correlation in the beta values
can be observed. This suggests that either irace
has identified the alpha values correctly but not the
beta values, or the LLM has identified the beta values
correctly but not the alpha values.

We believe that, although BRKGA+LLM’s results are not
favorable compared to those obtained with the help of irace
in the context of two out of four problem instances, our
approach benefits from a significantly reduced computational
effort (see Table7). This still holdswhen the computation time
required to extract five metric values to build the prompts is
taken into account. Additionally, with model improvements
or prompt adjustments—for example, the LLM currently,
by its own internal decision, produces values divisible by
0.05, leading to a loss of precision compared to irace—
greater precision could enable the LLM to improve in the
future.

3) DIMENSION 3 OF THE EVALUATION FRAMEWORK:
PROMPT QUALITY
In the final dimension, we transition from a numerical
analysis—as conducted in the previous two dimensions—
to a more interpretative approach, where we discuss the
complex process of designing a well-working prompt tailored
to the considered optimization problem. To accomplish this,
we first examine the five selected metrics already introduced

VOLUME 13, 2025 2071

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

TABLE 6. Comparison of the LLM output with random values. static refers to a variant of BRKGA+LLM in which the LLM output is replaced by
probabilities computed based on random alpha and beta values. dynamic refers to a very similar BRKGA+LLM variant in which the random values for the
alpha’s and beta’s are dynamically changed at each iteration. Green cells indicate the best quality metrics results—higher values are better in this
maximization problem.

TABLE 7. Comparison of computational time (in seconds) for irace
(single-threaded and parallel on SLURM) vs. LLM (Claude-3-Opus) via API,
highlighting significant time differences despite hardware variations.

in Section IV-A. This is crucial because every additional
metric enlarges the prompt. And the larger the prompt, the
smaller the maximum network size that—due to the limited
size of the context window—can be passed to the LLM.
Also, larger prompts are associated with increased financial
costs. Hence, it is essential to determine whether similar or
even superior results can be achieved using less information.
To investigate this, we perform two experiments: the first
assesses the correlation between each pair of metrics, and the
second removes information from the prompt to analyze the
impact on the LLM results.

a: CORRELATION BETWEEN METRICS
For this analysis, we utilize a matrix of plots provided
in Figure 5 concerning the soc-hamsterster instance for
which BRKGA+LLM significantly outperformed BRKGA; see
Table 5. Hereby, the plots in the upper triangle of the
matrix are scatter plots that display the values of all
pairs of metrics. For example, the second plot in the first
matrix row shows the scatter plot concerning the values of
metrics out-degree (x-axis) and in-degree (y-axis).
In contrast, the plots in the lower triangle are kernel density
estimation (KDE) plots for each pair of metrics. KDE plots
provide a smoothed representation of the underlying data
distribution, aiding in the identification of patterns such as
clusters, outliers, and non-linear relationships. Lastly, the

diagonal showcases univariate KDE plots for each variable,
analogous to a histogram, depicting the distribution of each
variable independently. Note that a corresponding graphic
concerning the other problem instances is provided in the
GitHub repository, whose link can be found in Section I-B.
The following observations can be made based on Figure 5:

• The upper triangle reveals that all pairs of metric
comparisons exhibit a non-linear pattern, albeit to
varying degrees. For instance, the relationship between
in-degree and closeness indicates a complex
interaction between the metrics, suggesting that each
metric contributes additional information about the
problem. This finding indicates that none of the
considered metrics is superfluous.

• The KDE plots in the lower triangle highlight non-linear
relationships that may not be as apparent in the scatter
plots. The relationship between pagerank and all
other metrics (bottom row) indicates mainly a more
linear relationship with other metrics, which was not as
evident in the scatter plots. Still, the outliers shown in
the scatter plots do not allow pagerank to be excluded
from the prompt.

• Finally, the diagonal of univariate KDE plots reveals that
certain metrics, such as betweenness, contain more
frequently occurring values—observe the peak in the
plot. In other words, some betweenness values repeat
across many nodes in this instance. This insight suggests
developing a prompt design strategy to further decrease
the prompt size.

Upon examining each metric, we conclude that all are
potentially relevant and contribute to the outcome. However,
it is still possible that adjusting the set of metrics by removing
certain metrics or adding alternative ones could lead to even
better results.20

20Financial limitations prevent from conducting extensive experiments
and from studying every aspect of the prompt, especially for large-size,
challenging scenarios; hence, careful consideration is essential.

2072 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

TABLE 8. A numerical comparison of BRKGA+LLM and BRKGA+irace. In the latter algorithm, the alpha and beta values are determined by tuning through
irace. Green cells indicate the best quality metrics results—higher values are better in this maximization problem.

TABLE 9. The alpha and beta values as determined by irace and the LLM for each case. Pearson’s correlation coefficient (ρirace,LLM) is used to quantify
the relationships between the two sets of values.

b: REMOVAL OF INFORMATION
During our investigation, we discovered that modifying the
prompt has the following effects:

• When removing the graph metrics from the prompt
(by removing the [EXAMPLE GRAPH] tag), the LLM
is still capable of generating useful response values.
This implies that the LLM’s extensive pre-training
enables it to infer alpha and beta values, leveraging its
prior knowledge of relevant metrics for social network
node coverage problems. Despite this prior knowledge,
providing an example graph (in terms of the five metric
values per node) allows the LLM to refine the alpha
and beta values to better suit the considered k-dDSP
problem, resulting in improved output.

• Expressing metric values for each node in scientific
numerical notation does not compromise the quality of
the LLM’s response ([DATA] tag). This approach offers a

dual benefit: it enables greater precision while reducing
the character count and, therefore, the number of tokens
in the prompt.

• The beta values play a crucial role in shaping the
response quality. That is, omitting them significantly
reduces the quality of the LLM’s output. By assigning
importance weights to each metric (alpha values) and
requesting an expected value (beta), we apparently
enable the LLM to uncover more subtle patterns in
the evaluation graph’s metrics ([EVALUATION GRAPH]
tag), ultimately leading to enhanced results.

To summarize, while the LLM possesses prior knowledge,
it appears insufficient to enable the model to independently
identify patterns in tabular numerical data.

c: DIFFERENCES IN NODE SELECTION
Finally, we wanted to study how the use of LLM output leads
to the selection of different nodes for solutions produced by

VOLUME 13, 2025 2073

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 5. Correlations between all pairs of the five considered metrics concerning the soc-hamsterster network.

BRKGA+LLM in comparison to BRKGA. For this purpose,
Figure 6 shows the node probabilities computed based on
the alpha and beta values (black line) in relation to the
(normalized) values of the five metrics, exemplary in the
context of the synthetic graph 0.2-0.0-0.3-0.5. The x-axis
ranges over all 500 graph nodes, ordered by a non-increasing
LLM-probability. Moreover, by means of horizontal lines the
graphic marks the nodes chosen for the best BRKGA solution
(dotted), the best BRKGA+LLM solution (solid), and their

intersection (dashed). In the following, we point out three
specific cases highlighted as (a), (b), and (c) in Figure 6:
1) One of the nodes selected by BRKGA+LLM (second

solid green line) has a much higher closeness metric
value than it has an out-degree metric value. Remem-
ber that out-degree is the standard metric used by
BRKGA. This indicates that the LLM can identify more
suitable nodes by blending information from several
available metrics.

2074 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 6. Analysis of the probabilities computed based on the alpha and beta values (black line) in relation to the (normalized) values of the five
metrics. The x-axis ranges of all 500 nodes of the synthetic graph 0.2-0.0-0.3-0.5 ordered by a non-increasing LLM-probability. Moreover, the graphic
marks the nodes chosen for the best BRKGA solution, the best BRKGA+LLM solution, and their intersection.

2) Similar to (a), it can be observed that for the first
and last node selected by BRKGA+LLM, the closeness
value is higher than the one of out-degree. In contrast,
in the context of those nodes that are shared by
both BRKGA and BRKGA+LLM (green dashed lines),
closeness is high, but so is out-degree.

3) Cases in which closeness is high and out-degree
is relatively lower in the context of nodes selected
by BRKGA+LLM can also be seen in this example.
This indicates that, for the 0.2-0.0-0.3-0.5 network,
the best solution is achieved due to the LLM’s ability
to recognize the importance of closeness for certain
nodes, an importance that pure BRKGA cannot detect
due to a lack of information.

C. VISUAL COMPARATIVE ANALYSIS
Numerical analysis can fall short of capturing the full
complexity of a metaheuristics’ search process due to its
stochastic nature. Visual tools have emerged in recent years
to address this limitation. They were developed to provide
a more comprehensive understanding and additional insight.
One such tool is STNWeb [47], which generates directed
graphs from algorithm trajectories to visualize how these
algorithms navigate the search space. This allows to compare
and justify the performance of different algorithms. A visual
analysis is presented in this section to understand better the
advantages of our BRKGA+LLM approach over BRKGA and
BRKGA+FC.

Figure 7 shows a STNWeb plot displaying 10 runs of each
BRKGA+LLM, BRKGA, and BRKGA+FC when applied to the
soc-hamsterster instance. The following analysis highlights
the insights that can be obtained from this visualization.
However, first of all, let us explain the technical elements of
the plot:

1) Each of the 30 algorithm runs is shown as a trajectory—
that is, a directed path—in the search space. Hereby, the
trajectories of the three algorithms are distinguished by
color: BRKGA (cyan), BRKGA+FC (magenta), and
BRKGA+LLM (green).

2) Trajectory starting points are marked by a yellow
square (). Moreover, trajectory end points are gener-
ally marked by a black triangle (Test).

3) A trajectory consists of multiple solutions (nodes, ,
, and) connected by directed edges, each with an
associated fitness value. Since this is a maximiza-
tion problem (k-dDSP), the fitness increases as it
approaches the end of the trajectory Test .

4) The size of each node indicates the number of
trajectories that have passed through it.

5) A red node includes a best solution found by
all 30 algorithm trajectories. Note that different best
solutions might have been found.

Several interesting observations can be made based on
Figure 7. First of all, only BRKGA+LLM can find best
solutions (see the two red dots). Moreover, the two best
solutions found by BRKGA+LLM are rather different from
each other, as they are found in different areas of the search
space. The three algorithms seem to be attracted by different
areas of the search space. Moreover, while BRKGA and
BRKGA+FC clearly converge to solutions that are close to
each other, this is not so much the case for BRKGA+LLM,
which does not show a clear convergence behavior towards
a single area of the search space. Finally, note that the search
trajectories of BRKGA are much shorter than those of the two
hybrid approaches. Additional STN plots concerning other
problem instances can be found in the repository whose link
was provided in Section I-B.

VOLUME 13, 2025 2075

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

FIGURE 7. STNWeb-generated plot comparing the trajectories of BRKGA (cyan), BRKGA+FC (magenta) and BRKGA+LLM (green) over 10 runs on the
soc-hamsterster instance (with d = 1 and k = 32). This plot was generated using the so-called agglomerative clustering partitioning method available in
STNWeb, with the number of clusters set to approximately 20% of the total, allowing for a visualization focusing on the essential characteristics.

Following the empirical study of our prompt’s design
and quality (Section V-B) and following a visual analysis,
we can conclude that our proposed hybridization achieves its
intended objective: showing that LLMs can generate heuristic
information that can be used to improve the search process of
a metaheuristic. Interestingly, our approach has also outper-
formed an alternative hybridization scheme that used heuris-
tic information produced by a hand-crafted, specifically
trained, graph neural network from [19]. However, success-
fully integrating LLMs into MHs involves addressing several
critical issues and open questions, detailed in the next section.

VI. DISCUSSION AND OPEN QUESTIONS
The LLM frenzy continues to gain momentum, with new
papers appearing daily praising their virtues. LLMs are being
applied far and wide, from tackling complex problems to
simplifying mundane tasks. While it is uncertain whether
their utility is universally applicable, our approach reveals the
potential of LLMs to serve as pattern recognizers, uncovering
hidden patterns and providing researchers with insights to
boost their optimization algorithms. Our study gives rise to
several open questions, including the following ones:
• Are LLMs merely stochastic parrots or black boxes
capable of reasoning? In the influential paper by
Bender et al. [48], the authors raise concerns about the
risks of using LLMs and question their necessity. They

argue that LLMs are trained on vast amounts of data
based on probability distributions but lack any reference
to meaning, earning them the label of stochastic parrots.
However, significant progress has been made since
the paper’s publication in 2021. LLMs have improved
their capabilities, and it is questionable if they can still
be called ‘‘stochastic parrots.’’ Instead, they might be
seen as black boxes that can reason within a certain
context. Our research demonstrates the utility of LLMs
in one such context of reasoning. Moreover, several
other studies have confirmed the abil of LLMs to
reason in other specific contexts [5], [32]. On the other
hand, other —more sensitive— contexts such as legal
or moral reasoning [4] need more thoughtful human
oversight, since a careless integration of LLMs could
potentially have an unpredictably disruptive effect.
Thus, we suggest approaching LLMs with caution and
letting the experiments speak for themselves. After all,
technology can improve rapidly, and it is essential to
avoid hasty dismissal or overhyping LLMs as a silver
bullet.

• Are private LLMs the sole providers of superior
outcomes? In the past, it would have been accurate to
affirm this, as models such as GPT-4 and Claude-3-
Opus were recognized for their top-tier response quality.
In fact, our research demonstrates that Claude-3-Opus

2076 VOLUME 13, 2025

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

outperforms its competitors. However, the scene is
evolving rapidly. Recent models, such as Cohere’s
Command-R+, Mistral’s Mistral models, and Meta’s
Llama 3 (which we did not incorporate in our study,
because its context limit is very low: 8192), are deliver-
ing results comparable to some of the before-mentioned
models (e.g., [49], [50], [51]). These models also come
with open licenses, although with varying levels of
permissiveness. Nonetheless, it is important to note
that these models are all products of private entities
with substantial financial resources. The prospect of a
public entity or small business independently creating
an LLM from scratch appears remote, largely due to the
computational demands and associated costs. This could
potentially pose a risk to the transparency of their design
processes [52].

• What are the primary obstacles to adopting the
strategy proposed in our research? We identify
two significant hurdles: cost constraints and technical
limitations. While leveraging LLMs as software-as-
service can alleviate the need for in-house cluster
training, a substantial financial burden is incurred by
processing large volumes of tokens. Our investigation
revealed that even with moderate-sized graph instances
of around 7000 nodes, we quickly reach the token limit
of what the most permissive LLM can handle within its
context window (see subsectionV-A2). Having said that,
recent studies (see, for example, [53]) have proposed the
possibility of ‘‘infinite’’ context windows. Additionally,
Google’s Gemini Pro 1.5 model boasts an impressive
2 800 000-token context window limit [54]. However,
to successfully apply a strategy similar to ours in the
context of massive graphs—or, more generally, in the
context of large-scale problem instances—these two
limitations must be significantly mitigated. Alterna-
tively, a novel prompt strategy could be developed to
detect patterns in metrics while reducing token counts,
potentially through prompt compression [55] or relevant
node metric filtering. Neither of these alternatives has
been investigated in our research.

• As researchers, what other aspects of LLMs should
we be cautious about? Earlier, we touched on the
issue of LLMs’ capability for reasoning in certain
contexts. However, many argue that they are incapable
of reasoning altogether. This discrepancy stems from
the ambiguity surrounding the term ‘‘reasoning’’. In our
context, reasoning refers to the ability to infer and
identify useful patterns in metrics associated with
each node of a graph. In particular, we demonstrated
that LLMs do not produce random or uninformative
values but rather follow the given instructions. However,
if we had left the concept of ‘‘reasoning’’ or ‘‘pattern
discovery’’ too vague, our research would be susceptible
to misinterpretation. Therefore, we recommend that
researchers be aware of the underlying philosophical
discussions surrounding this technology when working

with LLMs. After all, technological advancements can
shape the way we express ourselves. A good starting
point may be to engage with the works of Floridi
(e.g., [33], [56]). Particularly since the boundaries of
LLMs’ capabilities remain undefined and are a subject
of ongoing debate.

• Are there ways to improve the integration between
MHs and LLMs? As discussed in Section II-B, there
are already a few hybridization approaches. These
include creating new MHs by leveraging LLMs to
generate code and employing LLMs as solvers for
optimization problems described in natural language.
In contrast, our approach utilizes LLMs as pattern
detectors for complex instances. These patterns are
then used to bias the search process of the meta-
heuristic. However, an intriguing integration could
involve combining all these hybridization techniques
within a single software framework. We believe that
these approaches are not mutually exclusive but rather
complementary. By unifying them, we may unlock even
greater contributions to the field of MHs. One potential
approach to achieving this integration could be through
the use of agents [57], which would be responsible for
orchestrating the three hybridization methods. Note that
agents are currently a topic of significant interest in the
LLM community [31].

VII. CONCLUSION
This paper showcased the potential of leveraging Large
Language Models (LLMs) as pattern search engines to
enhance metaheuristics (MH) by integrating the information
they provide. We demonstrate the effectiveness of this
approach on a combinatorial optimization problem in the
realm of social networks. An important aspect of our work
is prompt engineering. In fact, useful LLM answers are
only obtained with well-designed prompts. In the context
of the considered social networks problem, the LLM output
is used to compute a probability for each node of the
input graph to belong to an optimal solution. These node
probabilities are then used to bias the search process of a
biased random key genetic algorithm (BRKGA). We could
show that our hybrid approach outperforms both the pure
BRKGA and the state-of-the-art BRKGA variant, whose
search process is biased by the output of a hand-designed
(and trained) graph neural network model. To address
this, we created a tool named OptiPattern (LLM-
Powered Pattern Recognition for Combinatorial Optimiza-
tion), which implements this hybrid method and is available
at: https://github.com/camilochs/optipattern.

This pioneering approach paves the way for further explo-
ration, including extending LLM-assisted pattern recognition
to problem instances in a broader range of optimization
problems.

REFERENCES
[1] J. Achiam et al., ‘‘GPT-4 technical report,’’ 2023, arXiv:2303.08774.

VOLUME 13, 2025 2077

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

[2] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T.
Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A.
Joulin, E. Grave, and G. Lample, ‘‘LLaMA: Open and efficient foundation
language models,’’ 2023, arXiv:2302.13971.

[3] The Claude 3 Model Family: Opus, Sonnet, Haiku, Anthropic, San
Francisco, CA, USA, 2024.

[4] G. F. C. F. Almeida, J. L. Nunes, N. Engelmann, A. Wiegmann, and
M. D. Araújo, ‘‘Exploring the psychology of LLMs’ moral and legal
reasoning,’’ Artif. Intell., vol. 333, Aug. 2024, Art. no. 104145.

[5] J. Ahn, R. Verma, R. Lou, D. Liu, R. Zhang, and W. Yin, ‘‘Large language
models for mathematical reasoning: Progresses and challenges,’’ 2024,
arXiv:2402.00157.

[6] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler, E. H. Chi, T. Hashimoto,
O. Vinyals, P. Liang, J. Dean, and W. Fedus, ‘‘Emergent abilities of large
language models,’’ 2022, arXiv:2206.07682.

[7] Z. Wan, X. Wang, C. Liu, S. Alam, Y. Zheng, J. Liu, Z. Qu, S. Yan,
Y. Zhu, Q. Zhang,M. Chowdhury, andM. Zhang, ‘‘Efficient large language
models: A survey,’’ 2023, arXiv:2312.03863.

[8] M. Gendreau and J.-Y. Potvin, Eds., Handbook Metaheuristics, 3rd ed.,
Cham, Switzerland: Springer, 2019.

[9] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, ‘‘Hybrid meta-
heuristics in combinatorial optimization: A survey,’’ Appl. Soft Com-
put., vol. 11, no. 6, pp. 4135–4151, Sep. 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494611000962

[10] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer,
A. M. Karimi-Mamaghan, and E.-G. Talbi, ‘‘Machine learning
at the service of meta-heuristics for solving combinatorial
optimization problems: A state-of-the-art,’’ Eur. J. Oper. Res.,
vol. 296, no. 2, pp. 393–422, Jan. 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0377221721003623

[11] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning:
Limitations and Opportunities. Cambridge, MA, USA: MIT Press, 2023.

[12] M. Pluhacek, A. Kazikova, T. Kadavy, A. Viktorin, and R. Senkerik,
‘‘Leveraging large languagemodels for the generation of novelmetaheuris-
tic optimization algorithms,’’ in Proc. Companion Conf. Genetic Evol.
Comput. New York, NY, USA: Association for Computing Machinery,
Jul. 2023, pp. 1812–1820, doi: 10.1145/3583133.3596401.

[13] S. Liu, C. Chen, X. Qu, K. Tang, and Y.-S. Ong, ‘‘Large language models
as evolutionary optimizers,’’ 2023, arXiv:2310.19046.

[14] Z. Ma, H. Guo, J. Chen, G. Peng, Z. Cao, Y. Ma, and Y.-J. Gong,
‘‘LLaMoCo: Instruction tuning of large language models for optimization
code generation,’’ 2024, arXiv:2403.01131.

[15] C. Yang, X. Wang, Y. Lu, H. Liu, Q. V. Le, D. Zhou, and X. Chen,
‘‘Large language models as optimizers,’’ in Proc. 12th Int. Conf. Learn.
Represent., Jan. 2023, pp. 1–42. [Online]. Available: https://openreview.
net/forum?id=Bb4VGOWELI

[16] P.-F. Guo, Y.-H. Chen, Y.-D. Tsai, and S.-D. Lin, ‘‘Towards optimizing
with large language models,’’ 2023, arXiv:2310.05204.

[17] R. Ma, X. Wang, X. Zhou, J. Li, N. Du, T. Gui, Q. Zhang, and
X. Huang, ‘‘Are large language models good prompt optimizers?’’ 2024,
arXiv:2402.02101.

[18] Y. Bengio, A. Lodi, and A. Prouvost, ‘‘Machine learning for combinatorial
optimization: A methodological tour d’horizon,’’ Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, Apr. 2021.

[19] C. C. Sartori and C. Blum, ‘‘Boosting a genetic algorithm with graph
neural networks for multi-hop influencemaximization in social networks,’’
in Proc. 17th Conf. Comput. Sci. Intell. Syst. (FedCSIS), Sep. 2022,
pp. 363–371.

[20] M. López-Ibáñez, J. Branke, and L. Paquete, ‘‘Reproducibility in
evolutionary computation,’’ ACM Trans. Evol. Learn. Optim., vol. 1, no. 4,
pp. 1–21, Oct. 2021.

[21] Y. Sun, S. Wang, Y. Shen, X. Li, A. T. Ernst, and M. Kirley, ‘‘Boosting ant
colony optimization via solution prediction and machine learning,’’ Com-
put. Oper. Res., vol. 143, Jul. 2022, Art. no. 105769. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0305054822000636

[22] F. Lucas, R. Billot,M. Sevaux, andK. Sörensen, ‘‘Reducing space search in
combinatorial optimization usingmachine learning tools,’’ in Learning and
Intelligent Optimization, I. S. Kotsireas and P. M. Pardalos, Eds., Cham,
Switzerland: Springer, 2020, pp. 143–150.

[23] D. Liu, V. Perreault, A. Hertz, and A. Lodi, ‘‘A machine learning
framework for neighbor generation in metaheuristic search,’’ Frontiers
Appl. Math. Statist., vol. 9, Jul. 2023, Art. no. 1128181.

[24] M. Huber and G. R. Raidl, ‘‘Learning beam search: Utilizing machine
learning to guide beam search for solving combinatorial optimization
problems,’’ in Proc. Int. Conf. Mach. Learn., Optim., Data Sci., Jan. 2022,
pp. 283–298.

[25] A. Fenoy, F. Bistaffa, and A. Farinelli, ‘‘An attention model
for the formation of collectives in real-world domains,’’ Artif.
Intell., vol. 328, Mar. 2024, Art. no. 104064. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370223002102

[26] M. Alicastro, D. Ferone, P. Festa, S. Fugaro, and T. Pastore, ‘‘A
reinforcement learning iterated local search for makespan minimization
in additive manufacturing machine scheduling problems,’’ Comput. Oper.
Res., vol. 131, Jul. 2021, Art. no. 105272.

[27] A. A. Chaves and L. H. N. Lorena, ‘‘An adaptive and near parameter-free
BRKGA using Q-learning method,’’ in Proc. IEEE Congr. Evol. Comput.
(CEC), Jun. 2021, pp. 2331–2338.

[28] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, Jun. 2017, pp. 5998–6008.

[29] C. M. and Hugh, Deep Learning: Foundations and Concepts, 1st ed.,
Cham, Switzerland: Springer, Nov. 2023.

[30] C. Singh, J. P. Inala, M. Galley, R. Caruana, and J. Gao, ‘‘Rethinking inter-
pretability in the era of large language models,’’ 2024, arXiv:2402.01761.

[31] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V. Chawla, O. Wiest,
and X. Zhang, ‘‘Large language model based multi-agents: A survey of
progress and challenges,’’ 2024, arXiv:2402.01680.

[32] S. Mirchandani, F. Xia, P. Florence, B. Ichter, D. Driess, M. G. Arenas,
K. Rao, D. Sadigh, and A. Zeng, ‘‘Large language models as general
pattern machines,’’ 2023, arXiv:2307.04721.

[33] L. Floridi and A. C. Nobre, ‘‘Anthropomorphising machines and comput-
erising minds: The crosswiring of languages between artificial intelligence
and brain & cognitive sciences,’’ Minds Mach., vol. 34, no. 1, p. 5,
Apr. 2024, doi: 10.1007/s11023-024-09670-4.

[34] S. Qiao, Y. Ou, N. Zhang, X. Chen, Y. Yao, S. Deng, C. Tan, F. Huang, and
H. Chen, ‘‘Reasoning with language model prompting: A survey,’’ 2022,
arXiv:2212.09597.

[35] R. Ni, X. Li, F. Li, X. Gao, and G. Chen, ‘‘FastCover: An unsupervised
learning framework for multi-hop influence maximization in social
networks,’’ 2021, arXiv:2111.00463.

[36] P. Basuchowdhuri and S. Majumder, ‘‘Finding influential nodes in social
networks using minimum k-hop dominating set,’’ in Applied Algorithms,
P. Gupta and C. Zaroliagis, Eds., Cham, Switzerland: Springer, 2014,
pp. 137–151, doi: 10.1007/978-3-319-04126-1_12.

[37] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc. Adv.
Neural Inf. Process. Syst., Jan. 2020, pp. 1877–1901.

[38] W. Chen, ‘‘Large language models are few(1)-shot table reasoners,’’ 2022,
arXiv:2210.06710.

[39] B. Atil, A. Chittams, L. Fu, F. Ture, L. Xu, and B. Baldwin, ‘‘LLM stability:
A detailed analysis with some surprises,’’ 2024, arXiv:2408.04667.

[40] P. Erdős and A. Rényi, ‘‘On random graphs. I.,’’ Publicationes Mathemat-
icae, vol. 6, nos. 3–4, pp. 290–297, Jul. 2022.

[41] Y. Xing, Z. Chen, J. Sun, and L. Hu, ‘‘An improved adaptive genetic
algorithm for job-shop scheduling problem,’’ in Proc. 3rd Int. Conf.
Natural Comput. (ICNC), 2007, pp. 287–291.

[42] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari,
and T. Stützle, ‘‘The irace package: Iterated racing for automatic
algorithm configuration,’’ Oper. Res. Perspect., vol. 3, pp. 43–58,
Jan. 2016.

[43] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, L. Zi,
Z. Li, D. Li, E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, ‘‘Judging
LLM-as-a-judge with MT-bench and chatbot arena,’’ in Proc. Adv. Neural
Inf. Process. Syst., Jan. 2023, pp. 46595–46623.

[44] D. F. Nettleton, ‘‘A synthetic data generator for online social network
graphs,’’ Social Netw. Anal. Mining, vol. 6, no. 1, p. 44, 2016, doi:
10.1007/s13278-016-0352-y.

[45] J. Leskovec andA. Krevl. (Jun. 2014). SNAPDatasets: Stanford Large Net-
workDataset Collection. [Online]. Available: http://snap.stanford.edu/data

[46] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Pearson Correlation
Coefficient. Berlin, Germany: Springer, 2009, pp. 1–4, doi: 10.1007/978-
3-642-00296-0_5.

[47] C. C. Sartori, C. Blum, and G. Ochoa, ‘‘STNWeb: A new visual-
ization tool for analyzing optimization algorithms,’’ ACM SIGEVOlu-
tion, vol. 16, no. 3, Sep. 2023, Art. no. 100558. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2665963823000957

2078 VOLUME 13, 2025

http://dx.doi.org/10.1145/3583133.3596401
http://dx.doi.org/10.1007/s11023-024-09670-4
http://dx.doi.org/10.1007/978-3-319-04126-1_12
http://dx.doi.org/10.1007/s13278-016-0352-y
http://dx.doi.org/10.1007/978-3-642-00296-0_5
http://dx.doi.org/10.1007/978-3-642-00296-0_5

C. C. Sartori et al.: MHs and LLMs Join Forces: Toward an Integrated Optimization Approach

[48] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, ‘‘On
the dangers of stochastic parrots: Can language models be too big?’’ in
Proc. ACM Conf. Fairness, Accountability, Transparency. New York, NY,
USA:Association for ComputingMachinery,Mar. 2021, pp. 610–623, doi:
10.1145/3442188.3445922.

[49] C. Davis, A. Caines, Ø. Andersen, S. Taslimipoor, H. Yannakoudakis,
Z. Yuan, C. Bryant, M. Rei, and P. Buttery, ‘‘Prompting open-source and
commercial language models for grammatical error correction of English
learner text,’’ 2024, arXiv:2401.07702.

[50] Z. Liu et al., ‘‘LLM360: Towards fully transparent open-source LLMs,’’
2023, arXiv:2312.06550.

[51] H. Chen, F. Jiao, X. Li, C. Qin, M. Ravaut, R. Zhao, C. Xiong, and S. Joty,
‘‘ChatGPT’s one-year anniversary: Are open-source large languagemodels
catching up?’’ 2023, arXiv:2311.16989.

[52] B. Harandizadeh, A. Salinas, and F. Morstatter, ‘‘Risk and response
in large language models: Evaluating key threat categories,’’ 2024,
arXiv:2403.14988.

[53] T. Munkhdalai, M. Faruqui, and S. Gopal, ‘‘Leave no context behind:
Efficient infinite context transformers with infini-attention,’’ 2024,
arXiv:2404.07143.

[54] G. Team, ‘‘Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context,’’ 2024, arXiv:2403.05530.

[55] H. Jiang, Q. Wu, C.-Y. Lin, Y. Yang, and L. Qiu, ‘‘LLMLingua:
Compressing prompts for accelerated inference of large languagemodels,’’
2023, arXiv:2310.05736.

[56] L. Floridi, ‘‘Ai as agencywithout intelligence: OnChatGPT, large language
models, and other generative models,’’ Philosophy Technol., vol. 36, no. 1,
pp. 1–7, 2023.

[57] Z. Xi et al., ‘‘The rise and potential of large language model based agents:
A survey,’’ 2023, arXiv:2309.07864.

CAMILO CHACÓN SARTORI is currently pursu-
ing the Ph.D. degree in AI with the Artificial Intel-
ligence Research Institute (IIIA-CSIC), Bellaterra,
Spain. His research interests include establishing
a connection between computational optimization,
metaheuristics, visualization tools for understand-
ing algorithm behavior, and generative models.

CHRISTIAN BLUM received the Ph.D. degree
in applied sciences from the Free University
of Brussels, Brussels, Belgium, in 2004. He is
currently a Senior Research Scientist with the
Artificial Intelligence Research Institute (IIIA-
CSIC), Bellaterra, Spain. His research interests
include solving difficult optimization problems
using swarm intelligence techniques and combina-
tions of metaheuristics with exact techniques.

FILIPPO BISTAFFA received the Ph.D. degree in
computer science from the University of Verona,
in 2016. He is currently a Tenured Researcher
(former Marie Skłodowska-Curie Fellow) with
the Artificial Intelligence Research Institute (IIIA-
CSIC), Bellaterra, Spain. His research inter-
ests include optimization applied to complex
real-world problems (e.g., sustainable mobility,
and team formation for cooperative learning) and,
more recently, ethical and trustworthy AI.

GUILLEM RODRÍGUEZ COROMINAS is cur-
rently pursuing the joint Ph.D. degree in computer
science with the Polytechnic University of Cat-
alonia (UPC), Barcelona, Spain, and the Artificial
Intelligence Research Institute (IIIA), Bellaterra,
Spain. His research interests include tackling com-
plex combinatorial optimization problems using
metaheuristics, with a special focus on hybridizing
these methods with exact algorithms and machine
learning techniques.

VOLUME 13, 2025 2079

http://dx.doi.org/10.1145/3442188.3445922

