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I. THEORETICAL PROOFS

Here we provide the proofs not included in our manuscript
due to space constraints. All proposition and equation numbers
correspond to the ones in the manuscript, except for the ones
introduced here, denoted as (1A), (2A), etc.

Proposition 2. The worst-case complexity of solving
the AE-ISG model when using `1 (resp. `2) is
O
(
(e+ |FC(G)|)2 · |FC(G)|

)
(resp. O

(
e2 · |FC(G)|

)
).

Proof. Solving a LP problem requires O
(
x2 · c

)
operations,

where x is the number of variables and c is the number of
constraints [1]. With `1, the LP problem in

minimise
∑

S∈FC(G)

tS ,

subject to

∑
(i,j)∈E
{i,j}⊆S

{wi,j} − tS ≤ v(S),

∑
(i,j)∈E
{i,j}⊆S

{wi,j}+ tS ≥ v(S),
∀S ∈ FC(G).

(5)

has e + |FC(G)| variables and 2 · |FC(G)| constraints.
Henceforth, solving such LP problem requires
O
(
(e+ |FC(G)|)2 · |FC(G)|

)
. Solving a least-squares

approximation problem requires O
(
b2 · a

)
operations, where

a is the number of rows of A and b is the number of
columns [1]. Hence, in the case of `2, solving the problem in

minimise
∑

S∈FC(G)

 ∑
(i,j)∈E
{i,j}⊆S

{wi,j} − v(S)


2

. (6)

requires O
(
e2 · |FC(G)|

)
operations.

Lemma 1. Given G = (G, v), its approximate ISG AE-
ISG(G), and the corresponding residual vector r, then

V (CS∗G)− V (CS∗AE) ≤ r(CS∗AE)− r(CS∗G),

where r(CS) =
∑

S∈CS

rS . (15)

Proof. Given any CS, r(CS) = W (CS) − V (CS) (Equa-
tion 1). Hence,

V (CS∗G)− V (CS∗AE) =

W (CS∗G)− r(CS∗G)− V (CS∗AE). (1A)

Since CS∗AE is the optimal CSG solution for AE-ISG(G), and
we consider CSG as a maximisation problem, W (CS∗G) ≤
W (CS∗AE). Thus, from (1A) we can infer

V (CS∗G)− V (CS∗AE) ≤
W (CS∗AE)− r(CS∗G)− V (CS∗AE). (2A)

Since W (CS∗AE)−V (CS∗AE) = r(CS∗AE), (2A) is equivalent
to (15).

Proposition 5. Given a CFG G, its approximate ISG AE-
ISG(G), and a coalition structure CS solution to the CSG
problem of AE-ISG(G) with an optimality gap OCS , then

V (CS∗G)− V (CS) ≤ OCS + r(CS)−minr (18)

Proof. Given any CS, W (CS) = V (CS) + r(CS) (Equa-
tion 1). We rewrite

W (CS∗AE)−W (CS) ≤ OCS , (13)

as

V (CS∗AE) + r(CS∗AE)− V (CS)− r(CS) ≤ OCS . (3A)

Since V (CS∗AE) ≥ V (CS∗G) − r(CS∗AE) + minr (Proposi-
tion 4), from (3A) we get

V (CS∗G)−�����r(CS∗AE) +minr +�����r(CS∗AE)

− V (CS)− r(CS) ≤ OCS , (4A)

which is equivalent to (18).

II. KGC vs HEURISTIC GC APPROACH

We now compare one of the most notable GC approaches,
i.e., one based on the concept of dominant set (DS) [2], with
KGC. We compare the two approaches in terms of runtime and
solution quality, following the same methodology discussed in
the manuscript. As expected, results in Table I show that the
heuristic approach is much faster in terms of runtime since it
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does not seek optimality. Of course, its performance is sub-
optimal: the heuristic approach achieves a solution quality of
84% wrt the optimal solution computed by KGC. Moreover,
we remark that by replacing KGC with a heuristic approach
one loses all the theoretical quality guarantees we provide in
Section V-A of our manuscript, which rely on the optimality
of the solution of the GC problem.

n KGC runtime (s) DS runtime (s) DS quality (%)
50 9.96 0.00 0.84

100 517.08 0.02 0.85
200 7330.00 0.04 0.84

TABLE I
RESULTS OF THE COMPARISON.
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