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Abstract. Co-operative learning is used to refer to learning procedures
for heterogeneous teams in which individuals and teamwork are organ-
ised to complete academic tasks. Key factors of team performance are
competencies, personality and gender of team members. Here, we present
a computational model that incorporates these key factors to form het-
erogeneous teams. In addition, we propose efficient algorithms to parti-
tion a classroom into teams of even size and homogeneous performance.
The first algorithm is based on an ILP formulation. For small problem
instances, this approach is appropriate. However, this is not the case for
large problems for which we propose a heuristic algorithm. We study the
computational properties of both algorithms when grouping students in
a classroom into teams.

1 Introduction

Students learn best when they are actively engaged in the processing of infor-
mation [24]. One way to involve students in active learning is to have them learn
from one another within teams. Research shows that students working in teams
tend to learn more and retain the knowledge longer than when the same content
is presented by means of other instructional formats; they also appear more sat-
isfied with their classes [6]. However, not just any team promotes learning. In
order for learning to be productive, all teams in the classroom should be hetero-
geneous, that is, representative of the diversity of the whole class and balanced
in size. Also, effective education must balance performance across teams, that
is, performance should be as homogeneous as possible in the classroom: No one
should be left behind.

Considerable work in fields such as organisational psychology, and industrial
psychology has focused on various factors that influence team performance [5,
15,25,26]. [5,26] underline the importance of personality traits or types for team
composition. Other studies have focused on how team members should differ or
converge in their characteristics, such as personality, competencies, or gender,
among others [15,25], in order to increase performance.
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Also in the area of multiagent systems, team composition has attracted much
research. MAS research has widely acknowledged competencies as important to
perform tasks of different nature [9,17,21]. However, the majority of approaches
represent capabilities of agents in a Boolean way (i.e., an agent either has a
required skill or not). This is a simplistic way to model an agent’s set of capa-
bilities since it ignores any skill degree. In real life, capabilities are not binary
since every individual shows different performances for each competence. Addi-
tionally, the MAS literature has typically disregarded significant organizational
psychology findings (with the exception of several recent, preliminary attempts
like [11] or [3]). To the best of our knowledge, the current organizational psy-
chology and MAS literature have not tackled how to compose teams taking into
account the personality, gender and competencies of individuals.

Given this background, in this paper we address the following team compo-
sition problem commonly faced by educators. There is a complex task that has
to be solved by different teams of students of the same size [1]. The task requires
that each team has at least one student that shows a minimum level of compe-
tence for a given set of competencies. We have a pool of students with varying
genders, personalities, and competencies’ levels. The problem is how to partition
students into teams that are balanced in size, competencies, personalities, and
gender. We refer to these teams as synergistic teams.

This paper makes the following contributions. First, we identify and formalise
a new type of real-world problem: the synergistic team composition problem
(STCP), requiring balanced solutions in terms of team size and team value.
Second, we propose two algorithms to solve STCP: an algorithm to optimally
solve it that is very efficient for small instances, and an approximate algorithm
that is effective for larger instances. And third, a computational comparison of
both algorithms over realistic settings in an education context.

Outline. The remainder of this paper is structured as follows. Section 2 intro-
duces basic definitions required by our team composition problem. Section 3
introduces the synergistic team composition problem. Section 4 details how to
compute a team’s synergistic value. Sections 5 and 6 describe how to opti-
mally and approximately solve the synergistic team composition problem respec-
tively. Then, Sect. 7 reports on our empirical analysis of both algorithms over
artificially-generated instances of the synergistic team composition problem.
Finally, Sect. 8 draws some conclusions and sets paths to future research.

2 Basic Definitions

We consider that each student has a gender, personality, and competencies.
First, to measure personality, we explore a novel method: the Post-Jungian

Personality Theory [28], a modified version of the Myers-Briggs Type Indica-
tor (MBTI) [8].1 This questionnaire is short, contains only 20 quick questions
(compared to the 93 MBTI questions). This is very convenient for both experts

1 MBTI numerical values can be used with the same purpose.



Heterogeneous Teams for Homogeneous Performance 91

designing teams and individuals doing the test since completing the test takes
just a few minutes (for details of the questionnaire, see [28, p.21]). In contrast to
the MBTI measure, which consists of four binary dimensions, the Post-Jungian
Personality Theory uses the numerical data collected using the questionnaire
[27]. The results of this method seem promising, since within a decade this novel
approach has tripled the fraction of Stanford teams awarded US prizes by the
Lincoln Foundation [27]. The test is based on the pioneering psychiatrist C. G.
Jung’s personality model [14]. It has two sets of variable pairs called psycholog-
ical functions: (1) Sensing / Intuition (SN), and (2) Thinking/Feeling (TF) and
two sets of attitudes: (3) Extroversion/Introversion (EI), and (4) Perception /
Judgment (PJ).

Psychological functions and attitudes compose together a personality. The
numerical values for each dimension of a personality (SN, TF, EI, PJ) are mea-
sured through a five multiple choice true/false questions. Thus,

Definition 1. A personality profile is a tuple 〈sn, tf , ei, pj〉 ∈ [−1, 1]4, where
each of these four components represents one personality trait.

Second, a competence integrates the knowledge, skills and attitudes that
enable a student to act correctly in a job, task or situation [22]. Each student is
assumed to possess a set of competencies with associated competence levels. Let
C = {c1, . . . , ck} be the whole set of competencies, where each element ci ∈ C
stands for a competence.

Definition 2. A student is represented as a tuple 〈id, g,p, l〉 such that: id is an
identifier; g ∈ {man,woman} is a gender; p = 〈sn, tf , ei, pj〉 is a personality
profile; l : C → [0, 1] is a function that assigns the quality level of the outcome
with respect to competence c.2

Henceforth, we will note the set of students as A = {a1, . . . , an}. Moreover,
we will use super-indexes to refer to students’ attributes. For instance, given a
student a ∈ A, ida will refer to the id attribute of student a.

Definition 3 (Team). A team is any subset of A with at least two students.

We denote by KA = (2A \ {∅}) \ {{ai}|ai ∈ A} the set of all possible teams
in A.

Finally, a team is any subset of A with at least two students. We denote by
KA = (2A \ {∅}) \ {{ai}|ai ∈ A} the set of all possible teams in A.

3 The Synergistic Team Composition Problem

We can regard our team composition problem as a particular type of set parti-
tioning. We will refer to any partition of A as a team partition. Since all teams
should have an even size, we only consider team partitions whose teams are
constrained by a given size.
2 We assume that the competence level is zero when a student does not have a com-

petence (or we do not know its value).
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Definition 4. Given a set of students A, we say that a team partition Pm of A is
constrained by size m, |A| ≥ m ≥ 2, iff for every team K ∈ Pm, m ≤ |K| ≤ m+1.

As |K|/m is not necessarily a natural number, we may need to allow for some
flexibility in team size within a partition. This is why we introduced above the
condition m ≤ |K| ≤ m + 1. In practical terms, in a partition we want to have
teams of sizes differing by at most one student. This is a common constraint
when partitioning a classroom: we want teams to be balanced in size. We note
by Pm(A) the set of all team partitions of A constrained by size m.

The question is: which partition to choose? We want to have teams that
show a homogeneous behaviour so that there are no big differences in perfor-
mance (i.e., we do not want partitions for which some teams perform well and
some poorly; Remember, no one is to be left behind!). To do that, we first define
the synergistic value of a team K, noted as s(K), as an expectation of its per-
formance. We present the formal definition of such a function in Sect. 4. Second,
we define the overall performance of a partition as the Bernoulli-Nash prod-
uct of individual teams’ synergistic values, since this function evaluates better
homogeneous (“fair”) solutions [16] than other functions (e.g. the sum).

Definition 5. Given a team partition Pm, the synergistic value of Pm is

S(Pm) =
∏

K∈Pm

s(K). (1)

Thus, the STCP is solved by finding the partition with the highest synergistic
value.

Definition 6. Given a set of students A the synergistic team composition prob-
lem (STCP) is the problem of finding a team partition constrained by size m,
P ∗

m ∈ Pm(A), that maximises S(Pm), namely:

P ∗
m = arg max

Pm∈Pm(A)

S(Pm)

3.1 Relation with the Coalition Formation Literature

The STCP is a particular case of a coalition generation problem [20]. Unfortu-
nately, we cannot benefit from the algorithms in the literature. In particular,
following [19], given a STCP we can identify a constrained coalition formation
(CCF) game G = 〈A,Pm(A), s〉, where A is the set of students, Pm(A) is the
set of feasible coalition structures (i.e. team partitions constrained by size m as
per definition 4), and s is the characteristic function (synergistic value function)
that assigns a real value to every coalition (team) that appears in some feasi-
ble coalition structure (team partition). Given the former CCF game, solving
the STCP amounts to finding a coalition structure (team partition) with the
highest total value. More precisely, the STCP poses a particular type of CCF
game, a so-called basic CCF game [20]. Intuitively, the constraints in a basic
CCF game are expressed in the form of: (1) sizes of coalitions that are allowed
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to form; and (2) subsets of students whose presence in any coalition is viewed
as desirable/prohibited. On the one hand, a STCP naturally defines constraints
on the size of coalitions. On the other hand, expressing a STCP as a CCF prob-
lem requires one positive constraint per feasible team (i.e., q positive constrains),
while the set of negative constraints is empty. The number of positive constraints
is so large for the problems we want to solve (i.e. >3000) that these problems
are prohibitive for the algorithm in [19].

4 Computing Team Synergistic Values

A team K is effective solving a task when it is both proficient (covers the
required competencies) and congenial (balances gender and psychological traits
so that students work well together) [28]. We linearly combine these two aspects
(uprof (K) and ucon(K), respectively) into the synergistic value of K as follows:

Definition 7. Given a team K, the synergistic value of team K is defined as:

s(K) = λ · uprof (K) + (1 − λ) · ucon(K) (2)

λ ∈ [0, 1] is the relative importance of K being proficient.

In general, the higher the value of λ, the higher the importance for the
proficiency of a team. The setting of the value of λ depends on the task type. For
instance, task types that are difficult and performed for the first time (no experts
on that matter) require a high level of creativity and exchange of ideas, and
hence, personality and gender balance (congeniality) should be more important
than proficiency (λ < 0.5). However, for tasks where team members need to act
fast (such as sport competitions or rescue teams) it is crucial for a team to be
proficient (λ > 0.5). For creative task types that require certain levels of both
proficiency and congeniality (such as creating a webpage) the value of λ should
be set to 0.5 (so that congeniality and proficiency are equally important). The
next subsections detail how to measure team proficiency and congeniality.

4.1 Evaluating Team Proficiency

Given a team and a task, we want to calculate the degree of proficiency of the
team as a whole, noted uprof . In other words, our aim is to match each com-
petence with the student(s) whose personal competence level is closer to the
task competence level requirement. With this we aim at avoiding both under-
proficient and over-proficient allocations as both of those scenarios are ominous
for team performance. In the first case, under-proficient students may get frus-
trated because they do not have enough knowledge to cope with the assigned
competence requirements. In the second case, over-proficient students may get
distracted and unmotivated because of the easiness of a job they are asked to
do [7]).

In other words, given a team and a task, we want to measure how apt is the
team to solve the task. We understand a task as a particular instance of a task
type that specifies the competencies and competence levels required to solve it.
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Definition 8. A task type τ is defined as a tuple 〈λ, {(ci, li, wi)}i∈Iτ
〉, where Iτ

is the index set of the required competencies; λ ∈ [0, 1] is the importance given to
proficiency; ci ∈ C is a required competence; li ∈ [0, 1] is the required competence
level for ci; wi ∈ [0, 1] is the importance of competence ci; and

∑
i∈Iτ

wi = 1.

A task is an instance of a task type defined as:

Definition 9. A task t is a tuple 〈τ,m〉 such that τ is a task type and m is the
required number of students, where m ≥ 2.

Henceforth, we denote by T the set of tasks and by T the set of task types.
Moreover, we will note as Cτ = {ci|i ∈ Iτ} the set of competencies required by
task type τ .

Students must feel both accountable and useful when working in a team [23].
Hence, each team member must be responsible for at least one competence; this
is expressed as a competence assignment between competencies and students:

Definition 10. Given task type τ and a team K ∈ KA, a competence assign-
ment is a function η : K → 2Cτ satisfying that Cτ =

⋃
a∈K η(a). We note by

ΘK
τ the set of competence assignments for task type τ and team K.

The degree of proficiency of a team will obviously depend on the particular
student(s) assigned to each competence.

Definition 11. Given task type τ , team K, and competence assignment η, the
set δ(ci) = {a ∈ K|ci ∈ η(a)} stands for those students responsible of competence
ci.

Informally, our aim is to match each competence ci with the student(s) δ(ci)
whose personal competence level is closer to the task competence level require-
ment. With this we aim at avoiding both under-proficient (frustrated students
because they cannot cope) and over-proficient (frustrated students because they
get bored [7]) allocations.

Definition 12 (Degree of under-proficiency). Given a task type τ , a team
K, and an assignment η, we define the team’s degree of under-proficiency for
the task as:

u(η) =
∑

i∈Iτ

wi ·
∑

a∈δ(ci)
|min(la(ci) − li, 0)|
|δ(ci)| + 1

Definition 13 (Degree of over-proficiency). Given a task type τ , a team
K, and an assignment η, we define the team’s degree of over-proficiency for the
task as:

o(η) =
∑

i∈Iτ

wi ·
∑

a∈δ(ci)
max(la(ci) − li, 0)

|δ(ci)| + 1

Finally, we can calculate the team’s proficiency degree to perform a task by
combining its over-proficiency and under-proficiency as follows:
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Definition 14. Given a team K and a task of type τ , the proficiency degree of
the team to perform an instance of τ is:

uprof (K) = max
η∈ΘK

τ

(1 − (υ · u(η) + (1 − υ) · o(η)) (3)

where υ ∈ [0, 1] is the penalty given to the under-proficiency of team K.

If we want to penalise teams that cannot cope with the competence require-
ments (i.e. they are under-competent) we need to choose a large value for υ.
And similarly a small υ to penalise teams with members clearly over-competent.
Although the exact value to choose will depend on the particular task type and
student context, if the objective is to favour effective teams we should penalize
more their under-proficiency and thus select a significantly large value for υ.
Given these definitions, uprof (K) is correctly defined for any team, task type
and competence assignment:

Proposition 1. For any task type τ , team K, and η ∈ ΘK
τ , u(η) + o(η) ∈ [0, 1)

and 0 ≤ uprof (K) < 1.

Proof. Soundness is straightforward as a student cannot be over- and under-
proficient at the same time.

Computing uprof (K) is an optimisation problem: to have each competence
assigned to at least one student and each student assigned to at least one com-
petence so that the total cost of the assignment is minimal (in terms of under-
and over-proficiency). Such optimisation problem can be cast and efficiently
solved as a minimum cost flow problem [2]. The network model would contain
v = |K| + |Cτ | + 2 nodes and e = |K| · |Cτ | + |K| + |Cτ | edges. As discussed in
[18], the minimum cost flow problem can be solved in O(e · log(v) ·(e+v · log(v)))
on a network with v nodes and e arcs.

4.2 Evaluating Team Congeniality

Given a team and a task, we also need to measure the degree of congeniality of
the team, ucon, that is, how well do students work together in a creative and
co-operative atmosphere. According to [10], the only truthful collaboration is
the one containing tension, and disagreement as these improve the value of the
ideas, expose the risks inherent in plan, and lead to enhanced trust among the
team members. This conflict is generated by people having different views of
the world (associated with opposing personality and gender), whereas harmony
comes from agreement between people with similar personalities [28]. Based on
these findings Douglas J. Wilde [27] compiled heuristics to successfully compose
teams. According to Wilde’s findings the most successful teams are: (i) teams
whose SN and TF personality dimensions are as diverse as possible; (ii) teams
with at least one student with positive EI and TF dimensions and negative PJ
dimension, namely an extrovert, thinking and judging student (called ETJ per-
sonality); (iii) teams with at least one introvert student; and (iv) teams with
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gender balance. Hence, to define the degree of congeniality we get inspiration
from [27] where D. J. Wilde uses psychological traits (see Sect. 2) to form suc-
cessful teams. Formally, this can be captured by function:

ucon(K) = uSNTF (K) + uETJ(K) + uI(K) + ugender(K),

with:

1. uSNTF (K) = σ(K,SN) · σ(K,TF ) measures the diversity in a team, where
σ(K,SN) and σ(K,TF ) stand for the standard deviations over the SN and
TF personality traits of the members of team K. The larger the values of
σ(K,SN) and σ(K,TF ), the larger their product, and hence the larger the
personality diversity along the SN and TF dimensions within a team.

2. uETJ(K) = maxa∈KET J [max(α · p, 0), 0] measures the utility of counting on
ETJ personalities, being KETJ = {a ∈ K|tf a > 0, eia > 0, pja > 0} the set
of students exhibiting ETJ personality, α = (0, α, α, α) is a vector, and α is
the importance of counting on an extrovert, thinking, and judging student
(ETJ personality).

3. uI(K) = maxa∈K [max(β · p, 0), 0] is the utility of counting on an introvert
student, β = (0, 0,−β, 0) is a vector and β is the importance of introvert
students.

4. ugender(K) = γ · sin(π · g(K)) measures the importance of gender bal-
ance, where γ is a parameter to weigh the importance of gender balance,
and g(K) = w(K)

w(K)+m(K) calculates the ratio of women in a team (w(K)
and m(K) are functions counting the number of women and men, respec-
tively). A team K is perfectly gender-balanced iff w(K) = m(K), and hence
sin (π · g(K)) = 1.

5 Solving the STCP Optimally

Next we study how to optimally solve the STCP. We start by linearising the
problem in Sect. 5.1. This allows us to solve the STCP with the aid of off-
the-shelf solvers. Thereafter, in Sect. 5.2 we detail an optimal algorithm for the
STCP.

5.1 Linearising the STCP

We denote by n = |A| the number of students in A, by t a task of type 〈τ,m〉,
and by b the total number of teams, b = 	n/m
. Note that depending on the
cardinality of A and the desired team size, the number of students in each team
may vary in size. For instance, if there are n = 7 students in A and we want
to compose duets, we split students into two duets and one triplet. In general,
whenever n ≥ m: if n mod m = 0, each partition must contain b teams of size
m; and if n mod m ≤ b, each partition must contain b− (n mod m) teams of size
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m and n mod m teams of size m + 1.3 Let Q(n,m) be the quantity distribution
of students in teams of sizes m and m + 1; these are called feasible teams.

Notice that the total number of feasible teams is q =
(

n
m

)
+ min(n mod

m, 1) ·
(

n
m+1

)
. Therefore, let K1, . . . ,Kq denote the feasible teams in A, and

s(K1), . . . , s(Kq) their synergistic values concerning task t. Moreover, let b be
the number of teams required to form a team partition. Finally, let C be a matrix
of size n × q such that cij takes on value 1 if student ai is part of team Kj , and
0 otherwise.

We shall consider the set of binary decision variables xj , 1 ≤ j ≤ q, to
indicate whether team Kj is selected or not as part of the optimal solution of
the STCP. Then, solving the STCP amounts to solving the following non-linear
problem:

max
q∏

j=1

s(Kj)
xj (4)

subject to:

q∑

j=1

xj = b (5)

b∑

j=1

cij · xj = 1 ∀1 ≤ i ≤ n (6)

xj ∈ {0, 1} 1 ≤ j ≤ q (7)

Notice that constraint 5 enforces that the number of teams in the team par-
tition is b, whereas constraint 6 enforces that the selected teams form a partition
by imposing that no student can belong to two selected teams at the same time.
Now observe that Eq. 4 —the objective function— is non-linear. Nevertheless,
it can be readily linearised if we consider the logarithm of

∏q
j=1 s(Kj)

xj as our
objective function to maximise. Thus, solving the non-linear problem above is
equivalent to solving the following binary linear program:

max
q∑

j=1

xj · log(s(Kj)) (8)

subject to: Eqs. 5, 6, and 7.

5.2 An Algorithm to Optimally Solve the STCP

Algorithm 1 shows the pseudocode of an optimal solver for the STCP. The algo-
rithm starts by generating the input for an integer linear programming solver
3 Beyond these cases, there is no way to compute a partition constrained by m (see

def. 4). If so, m′ ≤ m, m′ = �n/(b + 1)� is the largest value smaller than m that can
be used to compute partitions.
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(lines 2 to 5). Line 2 generates all the possible teams of size m as dictated by
the quantity distribution Q(|A|,m). Thereafter, lines 3 and 4 compute the best
synergistic value per team. That is, these lines compute (1) the competence
assignment with the highest proficiency value. This amounts to solving an opti-
misation problem, as discussed at the end of subsection 4.1, and (2) the team’s
congenial value from the personalities and genders of the team members. Once
all synergistic values are computed, we can generate an integer linear program-
ming encoding of the problem like in Eq. 8 (line 5). The generated integer linear
program (ILP) can be solved with the aid of an ILP solver (line 6) such as, for
instance, CPLEX, Gurobi, or GLPK. Finally, the algorithm returns the team
partition together with the competence assignments (line 7).

Algorithm 1. STCPSolver
Require: A � The set of students
Require: t = 〈τ, m〉 � Task
Ensure: (P, η∗) � Best partition found and best assignments
1: P ← ∅
2: [K1, . . . , Kq] ← GenerateTeams(A,Q(|A|,m))
3: for i ∈ [1..q] do
4: (s(Ki), η

∗
i ) ← getBestSynergisticValue(Ki, t)

5: ILP ← generateILP([K1, . . . , Kq], [s(K1), . . . , s(Kq)], b)
6: P ← solve(ILP )
7: return (P, {η∗

i }Ki∈P )

The cost of optimally solving an STCP can be split into: the cost of generating
the ILP model, and the cost of solving it. As to the first cost, this comes from:
(i) generating all the teams of sizes given by Q(n,m) (line 2); (ii) computing
the synergistic values of all teams (lines 3 and 4); (iii) generating a linear pro-
gramming encoding (line 5). The cost of generating all teams is linear with the
total number of teams, and hence O(q). Note that the number of teams grows
rapidly with increasing m and n. Moreover, the cost of computing the syner-
gistic value for each team requires finding the optimal competence assignment.
As discussed in Sec. 4.1, this can be cast as a minimum cost flow problem and
solved in O(m · log(e) · (m + e · log(e))) time, where e = m · |Cτ |, being |Cτ | the
number of competencies required by task type τ . Thus, generating the input to
an ILP solver becomes increasingly costly as the number of students per team
grows.

6 An Approximate Algorithm for the STCP

In this section we present an approximate algorithm — SynTeam (see Algo-
rithm 2). SynTeam quickly finds an initial partition, to subsequently improve it
by performing student swaps between teams. First, it randomly orders the list
of students and assigns students to teams one by one from that list following
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Q(|A|,m) (see Sec. 5.1) to generate an initial solution (P, S(P ),η) (line 1). The
assignment of students to competencies is solved as described in subsection 4.1.

Second, at each iteration, SynTeam generates a random neighbour of the
current solution as follows (line 4). First, it randomly selects two teams from
the current solution. Then, it computes the synergistic value of all partitions
resulting from substituting the randomly selected teams by two new teams (and
corresponding competence assignments. see Subsection 4.1) formed by reordering
the students of the randomly selected teams in all possible ways. It stores the
best option in (P ′, S(P ′),η′). In addition, if the current iteration is the nl-th—
not necessarily consecutive—non-improving iteration,4 the following more fine-
grained procedure is applied to (P,η) (line 6). In the ascending order determined
by team and student indexes it tries to swap two students from two different
teams. The first improving solution found this way (if any) is stored in (P ′,η′)
and the cl counter, for non-consecutive non-improving iterations, is re-initialized.
Finally, the algorithm stops after nr consecutive non-improving iterations.

Algorithm 2. SynTeam
Require: A � The list of students
Require: nr � Max. # of consecutive non-impr. iterations
Require: nl � # of non-impr. iterations before student-swap
Ensure: (P, η) � Best partition found and best assignments
1: (P, S(P ), η) ← GenerateRandomSolution(A, Q(|A|, m))
2: cr ← 1, cl ← 1
3: while cr ≤ nr do
4: (P ′, S(P ′), η′) ← GenerateRandomNeighbor(P, η)
5: if S(P ′) ≤ S(P ) and cl = nl then
6: (P ′, S(P ′), η′) ← ApplyImprovingSwap(P, η)
7: cl ← 1

8: if S(P ′) > S(P ) then
9: (P, S(P ), η) ← (P ′, S(P ′), η′)

10: cr ← 1, cl ← 1
11: else
12: cr ← cr + 1, cl ← cl + 1

return (P, η)

7 Experimental Results

In this section we compare our two STCP solvers: optimal (STCPSolver), and
approximate (SynTeam). Our empirical evaluation compares: (1) their runtimes
as team sizes and number of students increase; (2) the quality of SynTeam’s
approximate solutions; (3) the anytime performance of SynTeam with respect
to STCPSolver.
4 If the current solution is improved at an iteration, we refer to it as an improving

iteration, a non-improving iteration otherwise.
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7.1 Empirical Settings

Our empirical evaluation employs the following settings:

– LP Solver. We used CPLEX Optimization Studio v12.7.1 [13] for STCP-
Solver.

– Students. We used actual-world data from 102 students, each one with an
id, a gender, a personality profile, and seven competencies with varying com-
petence levels.

– Task type. The task type used in our experiments here {(ci, li, wi)}i∈[1,7] was
the same as the one used in our study involving real students [4]. It had seven
equally important competencies, wi = 1/7, with a maximally competence
level requirement, li = 1, and the importance of proficiency set larger than
congeniality, λ = 0.8. In an educational context, task types requiring more
than seven competencies are rare and thus the task type used here is complex
enough for our purposes [12].

– Task. Team size m ranged from 3 to 6. Larger team sizes were not considered
because the generated STCPs were too costly for STCPSolver and rare in an
education context.

– Team proficiency. As in this paper we are just interested in the computa-
tional properties of the algorithms, the concrete value for υ is irrelevant. We
used υ = 1.

– Team Congeniality. We analytically assessed that to make each component
of the personality requirements equally relevant, we must set importance val-
ues as follows: (1) α = 0.11, (2) β = 3 · α, (3) γ = 0.33.

– Number of iterations without improvement (nr). To give SynTeam a
chance to visit all teams at least once without revisiting the same teams too
many times, we decided to set nr based on the value of b (number of teams in a
partition). We experimentally observed how the quality of SynTeam solutions
improved over time. Thus, setting nr to 1.5 · b offered a good compromise.

– Frequency of local search (nl). We empirically observed that, after per-
forming approximately nr

6 random team re-compositions without improve-
ment, the probability of finding an improvement was very low. Hence, we set
nl to nr

6 .

7.2 Computational Results

The experimental evaluation was performed on a cluster of PCs with Intel(R)
Xeon(R) CPU 5670 CPUs of 12 nuclei of 2933 MHz and at least 40 Gigabytes of
RAM. Moreover, we used IBM ILOG CPLEX v12.7.1 within both STCPSolver
and SynTeam. Note that CPLEX is used within SynTeam in order to calculate,
given a team, the optimal assignment of students to tasks. Moreover, note that
CPLEX was run in one-threaded mode, in order to be able to perform a fair
comparison.
Runtime Analysis. Figure 1 shows the performance, in terms of total run-
ning time, of SynTeam and STCPSolver for different teams as the number of
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students increases. We performed 20 runs for each configuration, and recorded
the total run time average and standard deviation. As team size (m) increases,
generating the input for STCPSolver becomes prohibitively costly. Therefore, for
STCPSolver we were only able to do calculations for: 102 students for m ∈ {3, 4},
60 students for m = 5, and 42 students for m = 6. For larger values of n and
m, reading the problem was beyond CPLEX capabilities.5 We observe that the
runtime of STCPSolver dramatically increases with the number of students (n)
and team size (m). Note that for team size m = 6 and n = 42 students, SynTeam
is more than two orders of magnitude faster than STCPSolver.

Fig. 1. SynTeam vs STCPSolver runtimes.

To better understand this result, we compared STCPSolver solving time
(only CPLEX time) with SynTeam. That is, we disregard the time required
by STCPSolver to generate the problem (lines 1–5 in Algorithm 1). Figure 2
shows this comparison. We observe that — even in this case — SynTeam is
more efficient for larger instances (team sizes m > 3 and a growing number of
students).
Quality Analysis. For each case we calculated the optimality ratio. Specifically,
we divided the solution obtained by SynTeam by the optimal solution calculated
by STCPSolver. Figure 4 illustrates this quality ratio with respect to the number
of students and team sizes. The results show that the quality of approximate
solutions slightly decreases with the number of students and team sizes but it
always remains above approx. 95%.
5 For instance, CPLEX must consider 12.271.512 binary variables for n = 48 and

m = 6.
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Fig. 2. SynTeam vs. STCPSolver solving times (disregarding problem generation time).

Fig. 3. Anytime performance (in quality ratio) of SynTeam vs. STCPSolver (n = 45,
m = 5).
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Fig. 4. SynTeam quality ratio.

Anytime performance. We chose the configuration with n = 45 students and
team size m = 5, since it is still in the region of problems that STCPSolver
could afford. Figure 3 shows the evolution of the best solutions found over time
(divided by the optimal solution) for both algorithms. Note that the problem
generation time required by STCPSolver is not included, and hence we only plot
the CPLEX solving time. Observe that SynTeam provides very good solutions in
approx. 15 s, while STCPSolver needs approximately 20 seconds (in addition to
more than 1000 s of preprocessing time) to come up with a first, low-quality solu-
tion. To conclude, to reach optimality, STCPSolver requires nearly two orders
of magnitude more time than the one required by SynTeam to obtain solutions
very close to optimality.

8 Conclusions

In this paper, we considered the Synergistic Team Composition Problem (STCP)
in the context of student team composition and proposed both an optimal and an
approximate solution to this problem. First, we discussed an algorithm to opti-
mally solve the STCP called STCPSolver. When we noticed that the algorithm
is only effective for small instances of the problem, we developed SynTeam, a
greedy algorithm for partitioning groups of humans into proficient, gender, psy-
chologically and size balanced teams, which yields a good, but not necessarily
optimum solution. Our computational evaluation shows that the larger the num-
ber of students and team sizes, the larger the benefits of SynTeam with respect
to STCPSolver. Furthermore, SynTeam provides good quality approximate solu-
tions (beyond 95% with respect to the optimal).
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This paper identified a real-world instance of an interesting new type of con-
strained coalition formation problem requiring a balanced coalition structure in
terms of coalition sizes and coalitional values. The computational analysis of our
proposed algorithms gives the guidelines for their use by any organisation that
faces the need to form problem solving teams (e.g. in a classroom, in a company,
in a research unit). The algorithm composes teams in a purely automatic way
without consulting experts, which is a huge advantage for environments where
there is a lack of experts.

Finally, we have implemented a freely available web-based application to
solve the STCP that automatically selects which algorithm to use depending on
the size of the problem. It is available here: https://eduteams.iiia.csic.es.

This new problem, STCP, has potential to spur future research. In particu-
lar, we aim at considering richer and more sophisticated models to capture the
various factors that influence the coalition composition process in the real world.
For instance, we want to be able to add constraints and preferences coming from
experts that cannot be established by any algorithm, e.g. Ana cannot be in the
same team with José as they used to have a romantic relationship.
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