
CUBE: A CUDA pproach for
Bucket Elimination on GPUs

Filippo Bistaffa1 and Nicola Bombieri2 and Alessandro Farinelli3

Abstract. We consider Bucket Elimination (BE), a popular al-
gorithmic framework to solve Constraint Optimisation Problems
(COPs). We focus on the parallelisation of the most computationally
intensive operations of BE, i.e., join sum and maximisation, which
are key ingredients in several close variants of the BE framework (in-
cluding Belief Propagation on Junction Trees and Distributed COP
techniques such as ActionGDL and DPOP). In particular, we pro-
pose CUBE, a highly-parallel GPU implementation of such opera-
tions, which adopts an efficient memory layout allowing all threads
to independently locate their input and output addresses in mem-
ory, hence achieving a high computational throughput. We compare
CUBE with the most recent GPU implementation of BE. Our results
show that CUBE achieves significant speed-ups (up to two orders of
magnitude) w.r.t. the counterpart approach, showing a dramatic de-
crease of the runtime w.r.t. the serial version (i.e., up to 652× faster).
More important, such speed-ups increase when the complexity of the
problem grows, showing that CUBE correctly exploits the additional
degree of parallelism inherent in the problem.

1 INTRODUCTION

Bucket Elimination (BE) [9] is a general algorithmic framework that
adopts Dynamic Programming (DP) to incorporate many reasoning
techniques. In this paper, we focus on the version of BE that solves
Constraint Optimisation Problems (COPs), a general class of prob-
lems that can be used to model several optimisation scenarios [8].
BE operates on functions in tabular form by means of two funda-
mental operations, i.e., join sum and maximisation, which are the
most computationally intensive tasks of the entire algorithm. Such
operations are also the key ingredients in several close variants of
the BE framework, including Belief Propagation (BP) on Junction
Trees [15], and Distributed COP techniques such as ActionGDL [24]
and DPOP [20].

Nevertheless, in many large COP instances BE may result in pro-
hibitive computation requirements (both in memory and runtime), as
its computational complexity is exponential in the induced width of
the graph representation of the problem [9]. For this reason, several
works in the constrained optimisation literature have tried to deal
with this complexity adopting various approaches. On the one hand,
Dechter [7] proposed Mini-Bucket Elimination, an approximate ver-
sion of BE with limited memory requirements and reduced compu-
tation. On the other hand, a recent strand of literature [17, 18] has in-
vestigated the use of AND/OR search trees, proposing several heuris-
tic approaches and bounding methods to reduce the search space.

1 University of Verona, Italy, email: filippo.bistaffa@univr.it
2 University of Verona, Italy, email: nicola.bombieri@univr.it
3 University of Verona, Italy, email: alessandro.farinelli@univr.it

In this paper we propose the use of parallel architectures to
speed-up the computation associated to COP solution techniques.
In particular, in recent years, many computationally intensive ap-
plications have successfully employed Graphics Processing Units
(GPUs), achieving speed-ups of several orders of magnitude [10].
Parallelisation has also been investigated to speed-up search-based
approaches for COP on multi-core CPUs [19], but the application
of these techniques to GPUs is difficult for several reasons. On the
one hand, general depth-first search is known to be difficult to paral-
lelise [21], especially on highly parallel architectures such as GPUs.
Moreover, the use of branch-and-bound may result in heavily un-
balanced search trees, requiring complex techniques to balance the
workload among the threads [19]. Such techniques are not effective
on GPUs, where load balancing is crucial to achieve a high compu-
tational throughput.

Against this background, in this paper, we investigate the use of
GPUs for BE, motivated by the above discussion, by previous works
that successfully parallelised DP on GPUs [13, 6, 23, 5], and by
the work of Fioretto et al. [11], who recently proposed a GPU ap-
proach for BE. Specifically, we propose CUBE (CUda Bucket Elim-
ination), providing a highly parallel implementation for the join sum
and maximisation operations associated to BE. CUBE proposes a
novel methodology for the parallelisation of such operations, which
is specifically designed to consider two fundamental aspects of the
GPU algorithmic design: thread independence and memory manage-
ment. This allows CUBE to achieve significant speed-ups with re-
spect to previous approaches and specifically to Fioretto et al. [11].

Our work opens future research developments in the field of con-
straint optimisation as it provides valuable techniques that can help
improving the performance, apart from BE itself, in other algorithmic
frameworks that adopt join sum and maximisation as subroutines.
These operations represent the key ingredients of several solution
techniques for COPs that have been proposed to overcome the mem-
ory requirements of BE, such as Mini-Bucket Elimination [7] (which
adopts the same join sum and maximisation operations discussed in
this paper), and the AND/OR search-based approaches proposed by
Marinescu and Dechter [17, 18], in which Mini-Bucket heuristics are
used to guide the search.

In more detail, this paper advances the state-of-the-art in the fol-
lowing ways:

• We propose a computational model for the join sum and max-
imisation operations where each thread is completely independent
from the others. More specifically, in our approach each thread
retrieves its input data and performs the necessary computations
avoiding any interaction with the other threads. This allows us to
significantly reduce sequential computation, hence fully exploit-
ing the computational capabilities of the GPU.

A

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-125

125

• We avoid unnecessary, expensive memory accesses by proposing
a technique that allows threads to locate their input data only on
the base of their own ID. We take advantage of the data reuse
pattern inherent in the join sum and the maximisation operations
by caching the input data in the shared memory, i.e., the fastest
form of memory in the GPU hierarchy [10]. Bandwidth efficiency
is also ensured by the high spatial locality inherent in our data
representation, achieved through a technique recently proposed by
Bistaffa et al. [5] for BP.

• We compare CUBE to the approach proposed by Fioretto et
al. [11] on the same experimental settings, i.e., we used the
same dataset and the same baseline sequential benchmark (i.e.,
FRODO [16]). Our results show that CUBE is up to 652× faster
than FRODO and that the speed-up obtained by CUBE is up to two
orders of magnitude higher than the other GPU approach. In con-
trast to the approach proposed by Fioretto et al. [11], the speed-ups
achieved by CUBE increase when the complexity of the problem
grows, thus showing that CUBE correctly exploits the degree of
parallelism inherent in the problem. This improvement allows us
to compute solutions for COP instances that could not be tackled
by previous BE approaches in a reasonable amount of time, show-
ing that our approach is a viable method for real-world problems.

2 BACKGROUND

In this section, we first provide a brief introduction to the BE al-
gorithm (Section 2.1), while Section 2.2 discusses previous works
related to BE on GPUs. Section 2.3 describes the main features of
GPUs, and Section 2.4 discusses the table memory layout employed
by CUBE [5].

2.1 Bucket Elimination

Bucket Elimination (BE) [9] is a general algorithmic framework that
adopts DP to incorporate many reasoning techniques. The input of
BE is given as a knowledge-base theory encoded by several functions
or relations over subsets of variables (e.g., clauses for propositional
satisfiability, constraints, or conditional probability matrices for be-
lief networks). In this work, we focus on Constraint Networks (CN),
following the definitions provided by Dechter [9].

Definition 1 A Constraint Network (CN) consists of a set X =
{x1, . . . , xn} of n variables such that x1 ∈ D1, . . . , xn ∈ Dn,
where Di represents the domain of the variable xi, together with a
set of m constraints {C1, . . . , Cm}.

Definition 2 A constraint Ci is a relation defined on a set Xi =
{xi1 , . . . , xih} of h variables, called the scope of the constraint,
such that Xi ⊆ X . Such a relation denotes the variables simul-
taneous legal assignments. Non-legal assignments are denoted as
unfeasible. Notice that Ci is a subset of the Cartesian product
Di1 × · · · ×Dih .

In this work we focus on the version of BE that solves COPs, and
specifically on Algorithm 1 detailed by Dechter [9]. COPs are a gen-
eral class of problems, which can be used to model several optimisa-
tion scenarios [8].

Definition 3 A Constraint Optimisation Problem is a CN augmented
with a set of functions. Let F1, . . . , Fl be l real-valued functional
components defined over the scopes Q1, . . . , Ql, Qi ⊆ X , let
ā = (a1, . . . , an) be an assignment of the variables, where ai ∈ Di.

The global cost function F is defined by F (ā) =
∑l

i=1 Fi(ā), where
Fi(ā) means Fi applied to the assignments in ā restricted to the
scope of Fi. Solving the COP requires to find ā∗ = (a∗1, . . . , a∗n),
satisfying all the constraints, such that F (ā∗) = maxāF (ā) (or
F (ā∗) = mināF (ā), in case of a minimisation problem).

Algorithm 1 BUCKETELIMINATIONCOP (CN, F1, . . . , Fl, o)

1: Partition {C1, . . . , Cm} and {F1, . . . , Fl}
into n buckets according to o

2: for all p ← n down to 1 do

3: for all Ck, . . . , Cg over scopes Xk, . . . , Xg , and
for all Fh, . . . , Fj over scopes Qh, . . . , Qj , in bucket p do

4: if xp = ap then

5: xp ← ap in each Fi and Ci

6: Put each Fi and Ci in appropriate bucket
7: else

8: Up ← ⋃
i Xi {xp}

9: Vp ← ⋃
i Qi {xp}

10: Wp ← Up ∪ Vp

11: Cp ← πUp (�
g
i=1 Ci)

12: for all tuples t over Wp do

13: Hp (t) ← ⇓ap:(t,ap) satisfies {C1,...,Cg}
⊕j

i=1 Fi (t, ap)

14: Place Hp in the latest lower bucket mentioning a variable
in Wp, and Cp in the latest lower bucket with a variable
in Up

15: Assign maximising values for the functions in each bucket
16: Return F (ā∗), i.e., the optimal cost computed in the first bucket

and ā∗, i.e., the optimal assignment

BE operates on the basis of a variable ordering o, which is used to
partition the set of functions into n sets B1, . . . , Bn called buckets,
each associated to one variable of the COP. In particular, each func-
tion Fi is placed in the bucket associated to the last bucket that is
associated with a variable in Qi, i.e., the scope of Fi. Figure 2 shows
the buckets corresponding to the example COP in Figure 1, adopting
the ordering o = 〈x1, x3, x2, x5, x4, x6〉.

x1

x2 x3

x4

x5 x6

F12

F
13

F14

F23

F
2
4

F
25 F35

F56

Figure 1: Example COP.

Then, buckets are processed from last to first (top to bottom), by
means of two fundamental operations, i.e., join sum (denoted as ⊕)
and maximisation (denoted as ⇓). Specifically, all the cost functions
in Bp, i.e., the current bucket, are composed with the ⊕ operation,
and the result is the input of a ⇓ operation. Such operation removes
xp (i.e., the variable associated to Bp) from the table, and produces
a new function Hp that does not involve xp, which is then placed in
the last bucket that is associated to a variable appearing in the scope
of the new function.

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs126

{F56}B6:

{F14, F24}B4:

{F25, F35}B5:

{F12, F23}B2:

{F13}B3:

{}B1:

Figure 2: Initial buckets.

Figure 3 shows the execution of BE on the previous example. In par-
ticular, if a bucket, say B4, contains more than one Fi, such functions
are first composed with ⊕ and then the corresponding variable (i.e.,
x4) is maximised out. In Figure 3, we represent these two subsequent
operations by means of the compact notation ⇓⊕. In the case of B4,
the result of ⇓⊕ is a function h4 (x1, x2) without x4, which is placed
in B2. By operating in such a way, we can guarantee that the result-
ing function in the first bucket (i.e., H3 (x1) in Figure 3) contains
only the first variable in o, i.e., x1, since all the remaining ones have
been maximised out during the previous steps. Hence, we compute
the optimal assignment for x1 as the one that maximises H3 (x1),
and propagate such assignment back to the second bucket. Then, we
proceed in the same way as before, computing the optimal assign-
ment for the corresponding variable, and propagating the result until
all buckets have been processed. Such process terminates when the
optimal assignment for all variables has been computed.

{F56 (x5, x6)}B6:

{F14 (x1, x4) , F24 (x2, x4)}B4:

{F25 (x2, x5) , F35 (x3, x5) , H6 (x5)}B5:

{F12 (x1, x2) , F23 (x2, x3) , H5 (x2, x3) , H4 (x1, x2)}B2:

{F13 (x1, x3) , H2 (x1, x3)}B3:

{H3 (x1)}B1:

⇓

⇓⊕

⇓⊕

⇓⊕

⇓⊕

Figure 3: BE execution.

Dechter [9] proves that the computational complexity of the BE al-
gorithm is directly determined by the ordering o.

Proposition 1 The complexity of BE is time and space exponential
in w∗ (o), the induced width of the problem given the variable order-

ing o, i.e., O
(
m · kw∗(o)

)
, where k bounds the domain size and m

is the number of constraints.

As a consequence, it is of utmost importance to adopt a variable or-
dering o that minimises the induced width w∗(o). Unfortunately, the
task of computing such ordering is NP-complete [9], and, for this
reason, a greedy procedure (Algorithm 2) [9] is usually adopted to
compute a variable ordering of acceptable quality.

Algorithm 2 GREEDYORDERING (CN,metric (·))
1: for all k ← n down to 1 do

2: x∗ = argmin
xi∈X

metric (xi)

3: o[k] ← x∗

4: Introduce edges in CN between all neighbours of x∗

5: Remove x∗ from CN
6: return o

Notice that Algorithm 2 can be parametrised with different
metric (·) functions, that evaluate each node on the basis of different
properties. The most commonly used are the min-degree heuristic (in
which metric (xi) is the number of neighbours of xi) and the min-
fill heuristic (in which metric (xi) is the number of edges that need
to be added to the graph due to the elimination of xi).

2.2 Related Work

To the best of our knowledge, the only work that specifically focuses
on the implementation of the BE algorithm for many-cores architec-
tures is the one by Fioretto et al. [11], in which the authors devise
an algorithm to realise the join sum and the maximisation operations
(referred as aggregate and project) on GPUs, by exploiting the high
degree of parallelism inherent in these operations.

Although this approach represents a significant contribution to the
state-of-the-art, there are some drawbacks that hinder its applicabil-
ity. First, the indexing of the tables is executed by using a Minimal
Perfect Hash function [3], i.e., a hash function that maps n keys to
n consecutive integers, which can be easily adopted as the indices of
such keys. Although minimal perfect hash functions can be used in
parallel by different threads to index the input, their construction is
inherently sequential, since the index of a key depends on the indices
assigned to the previously considered keys [2]. This aspect reduces
the efficiency of this approach especially on big instances, as shown
by our experiments in Section 4. In contrast, our focus on thread
independence and memory management allows us to obtain better
speed-ups that increase when growing the size of the instances.

This is possible thanks to the preprocessing technique proposed by
Bistaffa et al. [5], which exploits the improved table layout achieved
with such preprocessing to implement an efficient GPU version of
the base operations of Belief Propagation on Junction Trees (BP on
JTs) [15], i.e., reduction and scattering.

Nonetheless, their approach cannot be directly applied to BE. On
the one hand, the join sum operation is fundamentally different from
both reduction and scattering, as the reduction corresponds to the
maximisation in BE, and scattering computes a completely different
output than the join sum. On the other hand, Bistaffa et al. [5] do not
adopt the current state-of-the-art technique to implement the reduc-
tion operation (i.e., segmented reduction) and, hence, their approach
can suffer from a reduced computational throughput.

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs 127

2.3 GPUs

GPUs are designed for compute-intensive, highly parallel computa-
tions. These architectures perform particularly well on problems that
can be modelled as data-parallel computations where data elements
correspond to parallel processing threads, as they are designed on the
basis of the Single Instruction Multiple Data (SIMD) model [10]. We
program the GPU using the NVIDIA CUDA framework, which re-
quires the definition of particular functions, called kernels, executed
in parallel by thousands of threads on different inputs. Threads are
grouped into thread blocks. Threads of the same block share fast
forms of storage and synchronisation primitives. Memory plays a
crucial role in the design of efficient GPU algorithms. In fact, mod-
ern GPUs contain very fast but small-size memories (i.e., registers,
cache and shared memory), intended to assist high performance com-
putations, stacked above a slower but larger memory (i.e., global
memory), suitable to hold large amounts of data. Accessing global
memory is particularly expensive, and should be reduced as much
as possible. To do that, a common practice suggests to exploit data
locality, i.e., transferring small portions of frequently used data from
global to shared memory and to complete all the computational tasks
that use such data before accessing to new one. This allows min-
imising global memory accesses. Such transfers should be executed
in order to have consecutive threads fetching data from consecutive
memory addresses, which is denoted as memory coalescing (Fig-
ure 4). Coalesced accesses are related to the principle of locality of
information and they allow the hardware to combine multiple trans-
fers between global and shared memory into a single transaction. In
contrast, sparse data results in poor memory performance (Figure 5).

Figure 4: Coalesced accesses.

Global Shared

...
...

...
...

thread1

thread
2

thr
ea

d3

th
re
ad
n

thread
i

Figure 5: Uncoalesced accesses.

2.4 Preprocessing Tables

BE, as well as BP on JTs, operates on functions in tabular form con-
sidering groups of rows having the same assignments of the shared
variables between two tables. As an example, both tables in Figure 6
contain x1, thus BE (and, in particular, the join sum and maximi-
sation operations) will operate on groups having the same value for
x1 (coloured in white and grey). Bistaffa et al. [5] notice that, in
general, the arrangement of rows may suffer from poor data local-
ity (i.e., white and grey groups are interleaved in Figure 6), reducing
the efficiency of computations associated to BP. Thus, they propose
a preprocessing approach for tables to achieve the row arrangement
shown in Figure 7. Such arrangement allows optimised memory ac-
cesses and it enables tables to be split into smaller chunks (which are
now in consecutive memory addresses), so to handle tables that may
not fit into the GPU global memory. This table layout enables the
GPU to execute coalesced loads, grouping several memory accesses
and improving the computational throughput (Figure 5).

T1

x3 x2 x1 φ1

0 0 0 α1

0 0 1 α2

0 1 0 α3

0 1 1 α4

0 2 0 α5

0 2 1 α6

1 0 0 α7

1 0 1 α8

1 1 0 α9

1 1 1 α10

1 2 0 α11

1 2 1 α12

T2

x5 x4 x1 φ2

0 0 0 β1

0 0 1 β2

0 1 0 β3

0 1 1 β4

0 2 0 β5

0 2 1 β6

1 0 0 β7

1 0 1 β8

1 1 0 β9

1 1 1 β10

1 2 0 β11

1 2 1 β12

Figure 6: Original tables.

T p
1

x1 x3 x2 p(φ1)

0 0 0 α1

0 0 1 α3

0 0 2 α5

0 1 0 α7

0 1 1 α9

0 1 2 α11

1 0 0 α2

1 0 1 α4

1 0 2 α6

1 1 0 α8

1 1 1 α10

1 1 2 α12

T p
2

x1 x5 x4 p(φ2)

0 0 0 β1

0 0 1 β3

0 0 2 β5

0 1 0 β7

0 1 1 β9

0 1 2 β11

1 0 0 β2

1 0 1 β4

1 0 2 β6

1 1 0 β8

1 1 1 β10

1 1 2 β12

Figure 7: Preprocessed tables.

3 BE ON GPUS

This section presents CUBE, a GPU implementation of the joint sum
and maximisation operations of BE.

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs128

3.1 Join Sum on GPUs

We first discuss the implementation of the join sum operation on
GPUs. Such operation, denoted as ⊕, is very similar to the join of
relational algebra, in which the output table contains one row for
each couple of rows of the input tables that have a matching assign-
ment of the shared variables. In the case of the join sum, the value of
each row is given by the sum of the values of the corresponding input
rows. To better explain how the join sum works, we consider the ta-
bles T p

1 and T p
2 in Figure 7. In what follows, we denote as group a set

of rows that all have the same assignment over the shared variables,
or, more intuitively, the same colour.

In order to achieve a full parallelisation of the join sum, we adopt
the gather paradigm [14], in which each thread is responsible of the
computation of exactly one element of the output. Such a paradigm
offers many advantages w.r.t. the counterpart approach, i.e., the scat-
ter4 paradigm, in which each thread is associated to one element
of the input and contributes to the computation of many output ele-
ments. In fact, scatter-based algorithms have a reduced degree of par-
allelism since they often require atomic primitives (which inherently
serialise parts of the computation) to avoid having multiple threads
concurrently operating on the same output. As previously discussed,
only the array φ is stored in memory, since we assume that tables are
complete5 and, hence, it is not necessary to store the variable assign-
ment part. Therefore, we only discuss on how we compute the array
φ of the output table Ti ⊕ Tj , denoted as φ⊕. We map one GPU
thread t to each element of φ⊕, denoted as φ⊕[t].6

Our main goal is that each thread should be capable of computing
the indices of its input rows in T p

1 and T p
2 in a closed form only on the

base of its own ID t, with the aim of avoiding unnecessary memory
accesses to the input data. To achieve this, we now introduce some
background concepts needed to explain our indexing approach. First,
notice that the number of rows in each group is equal to the number of
all the possible assignments of the non-shared variables in the scope
of the table, i.e., the product of the domain sizes of such variables. In
particular, each group in T p

1 consists of 6 rows, as |D2| · |D3| = 6,
and the same applies to T p

2 , i.e., |D4| · |D5| = 6. Since the join
sum operation associates each of these 6 rows in T p

1 to each of the
6 matching rows in T p

2 , the corresponding group in the output table
will contain |D2| · |D3| · |D4| · |D5| = 36 rows. In general, it is easy
to verify that, if Xi = {xi1 , . . . , xih} and Xj = {xj1 , . . . , xjk}
are the scopes of the input tables Ti and Tj , the output table Ti ⊕ Tj

(where the ⊕ operator represents the join sum) contains a number of
rows equal to
⎛
⎝ ∏

xa∈Xi∩Xj

|Da|
⎞
⎠ ·

⎛
⎝ ∏

xb∈Xi Xj

|Db|
⎞
⎠ ·

⎛
⎝ ∏

xc∈Xj Xi

|Dc|
⎞
⎠

︸ ︷︷ ︸
rows(Xi,Xj)

.

(1)
For convenience, we define the function rows to denote the number
of rows in each group of the output table induced by the scopes Xi

and Xj . Formally, rows : 2X × 2X → N, where 2X denotes the
powerset of X .
4 Even if this paradigm shares the same name with the scattering phase of

BP, it refers to a completely different concept.
5 A table Ti with the scope Xi is complete if it contains all the possible as-

signments over the domains of the variables in Xi. We represent unfeasible
rows as ∞ values.

6 We adopt the zero-based convention, i.e., arrays start at index 0.

Algorithm 3 JOINSUMGPU(t,Xi, Xj)

1: g ← � t

rows(Xi,Xj)
� {Output group t belongs to}

2: idx ← t mod rows (Xi, Xj) {ID of t within g}
3: #i ← ∏

xb∈Xi Xj

|Db| {# of rows associated to g in Ti}
4: #j ← ∏

xc∈Xj Xi

|Dc| {# of rows associated to g in Tj}

5: γ ← g ·#i + � idx
#j

� {Input row in Ti}
6: δ ← g ·#j + idx mod #j {Input row in Tj}
7: φ⊕[t] ← φi[γ] + φj [δ] {Compute and store output}

Algorithm 3 summarises the approach we propose to compute the
join sum of two tables Ti and Tj , which is executed in parallel by
each thread to index the input tables and to compute each row of the
output table. As a first step, each thread t identifies which group it
belongs to (Line 1), by dividing its index t for the number of rows
in each output group, i.e., rows (Xi, Xj). Specifically, t operates
within the gth group. Furthermore, t computes its index idx relative
to the first row of its group in Line 2.

Then, to compute the indices γ and δ of its two input rows, t first
calculates #i and #j , representing the number of rows of each group
in Ti and Tj respectively, by multiplying the sizes of the domains of
the non-shared variables in each table (Lines 3 and 4).

A further inspection of Lines 5 and 6 reveals how Algorithm 3
organises the rows (Xi, Xj) elements of the gth output group among
the corresponding GPU threads. It associates the first #j rows of
such group to the first row of the gth group in Ti, and each of these
threads is then associated to each of the #j rows of the gth group in
Tj . This pattern is then repeated for the second row of the gth group
in Ti, and so on for all the #i rows of the gth group in Ti (Figure 8).
The offsets g ·#i and g ·#j ensure the selection of the gth group in
Ti and Tj , as they represent the total number of rows in the g groups
that precede the gth one in each input table.

Example 1 For a better understanding, we show how Algorithm 3
computes the row at index 59 of T p

1 ⊕ T p
2 . Such a row would be

computed by the thread t = 59, associated to the index idx = 23
of the output group g = 1, i.e., the grey one. In fact, as introduced
earlier in this section, rows (X1, X2) = 36. It is easy to verify that
#i = #j = 6. Then, t computes the indices of its input rows in T p

1

and T p
2 , i.e., γ = 6 + 3 = 9 and δ = 6 + 5 = 11. Hence, t = 59

computes the element at index 23 of the output grey group, i.e., the
one associated to the line at index 3 of the grey group in T p

1 and the
last line of the grey group in T p

2 , as represented by γ and δ.

Note that the only input required by each thread executing Algo-
rithm 3 is its own ID t, since Xi and Xj are equal and known in
advance by all threads. t does not determine which operations are
executed (as they are equal for all threads), but only where the in-
put data is located. For these reasons, Algorithm 3 fits perfectly the
SIMD model adopted by GPU architectures. In addition, Algorithm 3
does not contain any branching instruction, which would cause a phe-
nomenon called divergence, which reduces the degree of parallelism
by forcing the serialisation of threads executing different branches of
the program [12], hence limiting its computational throughput.

Finally, Algorithm 3 relies on a data reuse pattern, as each row of
Ti is the input of #j output elements and, symmetrically, each row of
Tj is the input of #i output elements. We avoid expensive accesses
to the GPU global memory7 by first transferring each coloured group
7 Global memory, in which the data is initially stored, is the slowest type of

memory of the GPU hierarchy [10].

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs 129

φi[0]

φi[1]

φj [0]

φj [1]

φj [2]

+

+

+

+

+

+

φ⊕[0]

φ⊕[1]

φ⊕[2]

φ⊕[3]

φ⊕[4]

φ⊕[5]

t0

t1

t2

t3

t4

t5

#i

#j

row
s
(X

i ,X
j)

Figure 8: Join sum output computation.

to the shared memory, which allows threads to fetch data roughly
100× faster [10]. Notice that the use of the shared memory is pos-
sible only because we represent the input data with the table layout
discussed in Section 2.4, in which coloured groups are in small, con-
tiguous chunks of memory. Since GPUs only have tens of KB of
shared memory available, it is not possible to achieve the same ben-
efits with the original tables (Figure 6), which should be transferred
in toto, possibly exceeding the hardware capabilities of the GPU.

For the same reason, CUBE is capable of processing tables that
are larger than the GPU global memory. In fact, our approach ex-
ploits the proposed table layout by splitting large tables into manage-
able chunks that can be processed independently. Specifically, this
division is achieved by computing the maximum number of kernels,
namely maxs, which can execute at the same time without exceed-
ing the memory capabilities of the device. In our implementation,
maxs is dynamically determined at runtime as the maximum num-
ber of kernels whose total amount of input and output data can be
stored into global memory. We also take into account the space con-
straints deriving from the use of shared memory (see Section 2.3), by
enforcing that single coloured chunks of data can fit in such memory.

Figure 9 shows an example in which the input is processed in three
different pieces by the kernels K1, K2 and K3. Notice that the inde-
pendence among such computations can be exploited by enabling a
pipelined execution model, in which each kernel Ki starts processing
as soon as its input chunk has been transferred to the GPU. Nonethe-
less, consumer NVIDIA GPUs have only one channel that can be
used for data transfers, preventing the parallelisation of the transfers
from the host to the device with the ones from the device to the host.
However, more advanced GPUs (e.g., NVIDIA Tesla) feature an ad-
ditional transfer channel, enabling a full pipeline (Figure 10).

Kernels

Transfers H→D1 H→D2 H→D3 D→H1 D→H2 D→H3

K1 K2 K3

Figure 9: Pipeline with one transfer channel.

Device → Host

Kernels

Host → Device H→D1 H→D2 H→D3

D→H1 D→H2 D→H3

K1 K2 K3

Figure 10: Pipeline with two transfer channel.

3.2 Maximisation on GPUs

Maximisation can be seen as a particular case of the relational alge-
bra project operation. In the case of BE, maximisation operates by
removing the variable associated to the current bucket from the input
table Ti. As a consequence, the resulting table contains Dp copies of
each unique assignment of the variables in its scope, i.e., Xi {xp}.
Maximisation then maps each unique assignment to the maximum of
the Dp values mentioned above. For example, if we want to compute
the maximisation of T1 (Figure 6) by removing x3, we first obtain the
table shown in Figure 11, in which each unique variable assignment
is highlighted with a different colour (here Dp = D3 = 2). The final
output is computed as shown in Figure 12. Figures 11 and 12 high-
light the high degree of parallelisation inherent in the maximisation
operation, as each coloured group can be processed independently
from the others. The maximisation of the Dp values within each
coloured group can be realised with a reduction operation, which can
be efficiently implemented on the GPU by means of a well-known
parallel algorithm [10].

x2 x1 φ1

0 0 α1

0 1 α2

1 0 α3

1 1 α4

2 0 α5

2 1 α6

0 0 α7

0 1 α8

1 0 α9

1 1 α10

2 0 α11

2 1 α12

Figure 11: T1 without x3.

x2 x1 m(φ1)

0 0 max(α1, α7)
0 1 max(α2, α8)
1 0 max(α3, α9)
1 1 max(α4, α10)
2 0 max(α5, α11)
2 1 max(α6, α12)

Figure 12: Maximisation output.

Nonetheless, Figure 11 also highlights the poor data locality of this
table layout (similar to the one in Figure 6), which causes the same
issues discussed in Section 2.4. To overcome these problems, we pre-
process the input table to achieve the row arrangement shown in Fig-
ure 13. In particular, we aim at placing each coloured group in con-
secutive memory locations, so to achieve a better data locality and
improve the efficiency of the maximisation operation. This is equiv-
alent to moving xp to the last column, and is implemented in CUBE
with Bistaffa et al.’s technique by considering as shared all the vari-
ables in the scope of the table minus xp.

This table layout enables an efficient GPU algorithm to compute
the final output of the maximisation operation, i.e., m(φ1) in the
above example. In general, the array φ of the output table can be

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs130

x2 x1 x3 p(φ1)

0 0 0 α1

0 0 1 α7

0 1 0 α2

0 1 1 α8

1 0 0 α3

1 0 1 α9

1 1 0 α4

1 1 1 α10

2 0 0 α5

2 0 1 α11

2 1 0 α6

2 1 1 α12

Figure 13: T1 after the preprocessing.

computed with a segmented reduction algorithm [22], a well-known
GPU primitive that differs from the standard reduction in that the lat-
ter operates on the entire set of input elements (e.g., it computes the
maximum over the entire length of the input array), while the for-
mer operates on several fractions of the input data, i.e., the coloured
groups in our case. The use of the segmented reduction allows an
improved computational throughput w.r.t. the approach proposed by
Bistaffa et al. [5], in which the authors implement the same operation
by manually devising a series of small standard reductions that can
lead to a low GPU utilisation when the coloured segments are small.

Finally, we further increase the efficiency of CUBE with two im-
provements. On the one hand, we avoid unnecessary data transfers
between the host and the device when computing the maximisation
operation. In particular, since the BE algorithm always applies the
maximisation operation on the result of the join sum operation, we
can avoid to transfer the join sum result (produced on the GPU mem-
ory) from the GPU to the CPU and directly run the maximisation on
the GPU, hence saving two data transfers. On the other hand, if the
tables are particularly small, we execute both the join sum and the
maximisation on the CPU, since the overhead of the transfers to the
GPU would hinder the benefits of parallelisation.

4 EMPIRICAL EVALUATION

The main goals of the empirical analysis are: i) to evaluate the par-
allel speed-up that CUBE achieves w.r.t. a sequential version of BE,
ii) to compare CUBE against the most recent approach to parallelise
BE on GPU, i.e., the work by Fioretto et al. [11], and iii) to evaluate
the scalability of our approach w.r.t. the size of the problem.

Following Fioretto et al. [11], we considered 3 different CN
topologies: i) random networks with a graph density of 0.3, ii) scale-
free networks generated with the Barabási-Albert model [1] using
m = 2, and iii) 2-dimensional square grid networks, in which in-
ternal nodes are connected to four neighbours, while nodes on the
edges (resp. corners) are connected to two (resp. three) neighbours.
Each function Fi is generated using uniformly distributed random
integer values in [0, 100] and the constraint tightness (i.e., ratio of
entries in such tables different from ∞) is set to 0.5 for all experi-
ments. Domain size is 5 for all experiments. We compared both GPU
approaches with FRODO [16], a standard sequential COP solver also
adopted by Fioretto et al. as baseline benchmark. In particular, within
FRODO we employ the DPOP algorithm [20].

To ensure a fair comparison, we run all the algorithms on the same
instances and adopting the same variable ordering, i.e., the one pro-
duced by FRODO. We consider the entire execution time for all the
algorithms, including data transfers.8 All our experiments are run
on a machine with a 3.10GHz processor, 16 GB of memory and a
NVIDIA Tesla K40. CUBE is implemented in CUDA.9 For Fioretto
et al.’s approach we use the authors’ implementation.

4.1 Experimental Results

Figures 14–16 show the speed-up of both GPU approaches w.r.t.
FRODO when increasing the number of variables in the CN. Each
data point in the plots represents the average over 20 random in-
stances of the ratio between the runtime required by the GPU ap-
proach and FRODO’s runtime.

The results show that CUBE allows a dramatic runtime reduction
w.r.t. to FRODO, by computing the solution at least one order of
magnitude faster than the sequential approach in every experiment.
In particular, CUBE is, on average, 530× faster than FRODO when
considering the biggest instances in our experiments (i.e., random
networks with n ≥ 30 and scale-free and grid networks with n ≥
70), by reaching a maximum speed-up of 652×.

More important, such speed-ups increase when the complexity of
the problem grows, thus confirming the scalability of CUBE, which
correctly exploits the additional degree of parallelism inherent in the
problem. In contrast, the speed-up of the approach by Fioretto et al.
decreases when the size of the problem increases.

Finally, the results show that the speed-up saturates after a cer-
tain number of variables (25 for random networks, 70 for scale-free
networks, and 36 for grid networks). This saturation happens when
the GPU reaches a full occupancy and it runs the maximum number
of threads (i.e., 30720 for our GPU model). After that, the hardware
forces blocks of threads to run sequentially, hence limiting the max-
imum speed-up.

10 15 20 25 30 35 40
100

101

102

103

Number of variables

Sp
ee

du
p

(×
)

CUBE
Fioretto et al.

Figure 14: Speed-up on random networks.

8 We measured that, on average, data transfers take approximately 20% of
the entire CUBE runtime.

9 Available at https://github.com/filippobistaffa/CUBE.

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs 131

10 20 30 40 50 60 70 80 90 100
100

101

102

103

Number of variables

Sp
ee

du
p

(×
)

CUBE
Fioretto et al.

Figure 15: Speed-up on scale-free networks.

16 25 36 49 64 81 100
100

101

102

103

Number of variables

Sp
ee

du
p

(×
)

CUBE
Fioretto et al.

Figure 16: Speed-up on grid networks.

5 CONCLUSIONS

This paper proposes CUBE (CUda for Bucket Elimination), a high-
throughput GPU implementation of the BE algorithm. Our experi-
mental results show that CUBE outperforms the most recent GPU
implementation of BE, by achieving parallel speed-ups up to two or-
ders of magnitude higher. More important, the speed-ups achieved by
CUBE increase when the complexity of the problem grows, allowing
us to solve problems that could not be tackled by the sequential BE
implementation in a reasonable amount of time.

Future work will aim at validating our approach on real-world
COP instances, such as pedigree haplotyping problems [19] and
satellite management problems [4]. We also plan to integrate our
GPU techniques in other algorithmic frameworks, such as Mini-
Bucket Elimination [7] (which adopts the same join sum and maximi-
sation operations discussed in this paper), and the AND/OR search-
based approaches proposed by Marinescu and Dechter [17, 18], in
which Mini-Bucket heuristics are used to guide the search.

REFERENCES

[1] Réka Albert and Albert-László Barabási, ‘Statistical mechanics of com-
plex networks’, Reviews of modern physics, 74(1), 47, (2002).

[2] Dan Anthony Feliciano Alcantara, Efficient hash tables on the GPU,
University of California at Davis, 2011.

[3] Ricardo Baeza-Yates and Patricio V. Poblete, ‘Algorithms and theory of
computation handbook’, chapter Searching, CRC Press, (2010).

[4] Eric Bensana, Michel Lemaitre, and Gerard Verfaillie, ‘Earth observa-
tion satellite management’, Constraints, 4(3), 293–299, (1999).

[5] Filippo Bistaffa, Alessandro Farinelli, and Nicola Bombieri, ‘Optimis-
ing memory management for belief propagation in junction trees us-
ing GPGPUs’, in IEEE International Conference on Parallel and Dis-
tributed Systems, pp. 526–533, (2014).

[6] Sebastián Dormido Canto, Ángel P. de Madrid, and Sebastián Dormido
Bencomo, ‘Parallel dynamic programming on clusters of workstations’,
Parallel and Distributed Systems, IEEE Transactions on, 16(9), 785–
798, (2005).

[7] Rina Dechter, ‘Mini-buckets: A general scheme for generating approx-
imations in automated reasoning’, in International Joint Conference on
Artificial Intelligence, pp. 1297–1303, (1997).

[8] Rina Dechter, ‘Bucket elimination: A unifying framework for reason-
ing’, Artificial Intelligence, 113(1–2), 41–85, (1999).

[9] Rina Dechter, Constraint processing, Morgan Kaufmann, 2003.
[10] Rob Farber, CUDA Application Design and Development, Elsevier,

2012.
[11] Ferdinando Fioretto, Tiep Le, Enrico Pontelli, William Yeoh, and Tran-

Cao Son, ‘Exploiting GPUs in solving (distributed) constraint optimiza-
tion problems with dynamic programming’, in Principles and Practice
of Constraint Programming, 121–139, Springer, (2015).

[12] Tianyi David Han and Tarek S Abdelrahman, ‘Reducing branch diver-
gence in GPU programs’, in ACM GPGPUs Workshop, (2011).

[13] Stephen Huang, Hongfei Liu, and Venkatraman Viswanathan, ‘Parallel
dynamic programming’, Parallel and Distributed Systems, IEEE Trans-
actions on, 5(3), 326–328, (1994).

[14] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis, In-
troduction to parallel computing: design and analysis of algorithms,
Benjamin/Cummings Publishing Company, 1994.

[15] Steffen L Lauritzen and David J Spiegelhalter, ‘Local computations
with probabilities on graphical structures and their application to expert
systems’, Journal of the Royal Statistical Society, 157–224, (1988).

[16] Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek,
‘FRODO 2.0: An open-source framework for distributed constraint
optimization’, in IJCAI DCR Workshop, pp. 160–164, (2009).

[17] Radu Marinescu and Rina Dechter, ‘Dynamic orderings for AND/OR
branch-and-bound search in graphical models’, Frontiers in Artificial
Intelligence and Applications, 141, 138, (2006).

[18] Radu Marinescu and Rina Dechter, ‘Best-first AND/OR search for
graphical models’, in AAAI Conference on Artificial Intelligence, pp.
1171–1176, (2007).

[19] Lars Otten and Rina Dechter, ‘A case study in complexity estimation:
Towards parallel branch-and-bound over graphical models’, in Confer-
ence on Uncertainty in Artificial Intelligence, pp. 665–674, (2012).

[20] Adrian Petcu, A Class of Algorithms for Distributed Constraint Opti-
mization, Phd. thesis no. 3942, Swiss Federal Institute of Technology
(EPFL), 2007.

[21] John H Reif, ‘Depth-first search is inherently sequential’, Information
Processing Letters, 20(5), 229–234, (1985).

[22] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens,
‘Scan primitives for GPU computing’, in Graphics hardware, pp. 97–
106, (2007).

[23] Guangming Tan, Ninghui Sun, and Guang R Gao, ‘Improving perfor-
mance of dynamic programming via parallelism and locality on mul-
ticore architectures’, Parallel and Distributed Systems, IEEE Transac-
tions on, 20(2), 261–274, (2009).

[24] Meritxell Vinyals, Juan A Rodriguez-Aguilar, and Jesús Cerquides,
‘Constructing a unifying theory of dynamic programming DCOP al-
gorithms via the generalized distributive law’, Autonomous Agents and
Multi-Agent Systems, 439–464, (2011).

F. Bistaffa et al. / CUBE: A CUDA Approach for Bucket Elimination on GPUs132

