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Abstract

Constraint optimisation represents a fundamental technique that has been suc-
cessfully employed in Multi-Agent Systems (MAS) in order to face a number of
multi-agent coordination challenges. In this thesis we focus on Coalition Forma-
tion (CF), one of the key approaches for coordination in MAS. CF aims at the
formation of groups that maximise a particular objective functions (e.g., arrange
shared rides among multiple agents in order to minimise travel costs). Specifically,
we discuss a special case of CF known as Graph-Constrained CF (GCCF) where
a network connecting the agents constrains the formation of coalitions. We focus
on this type of problem given that in many real-world applications, agents may be
connected by a communication network or only trust certain peers in their social
network. In particular, the contributions of this thesis are the following.

We propose a novel representation of this problem and we design an efficient
solution algorithm, i.e., CFSS. We evaluate CFSS on GCCF scenarios like col-
lective energy purchasing and social ridesharing using realistic data (i.e., energy
consumption profiles from households in the UK, GeoLife for spatial data, and
Twitter as social network). Results show that CFSS outperforms state of the art
GCCF approaches both in terms of runtime and scalability. CFSS is the first algo-
rithm that provides solutions with good quality guarantees for large-scale GCCF
instances with thousands of agents (i.e., more that 2700).

In addition, we address the problem of computing the transfer or payment
to each agent to ensure it is fairly rewarded for its contribution to its coalition.
This aspect of CF, denoted as payment computation, is of utmost importance
in scenario characterised by agents with rational behaviours, such as collective
energy purchasing and social ridesharing. In this perspective, we propose PK, the
first method to compute payments in large-scale GCCF scenarios that are also
stable in a game-theoretic sense.

Finally, we provide an alternative method for the solution of GCCF, by exploit-
ing the close relation between such problem and Constraint Optimisation Problems
(COPs). We consider Bucket Elimination (BE), one of the most important algo-
rithmic frameworks to solve COPs, and we propose CUBE, a highly-parallel GPU
implementation of the most computationally intensive operations of BE. CUBE
adopts an efficient memory layout that results in a high computational through-
put. In addition, CUBE is not limited by the amount of memory of the GPU and,
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hence, it can cope with problems of realistic nature. CUBE has been tested on the
SPOT5 dataset, which contains several satellite management problems modelled
as COPs. Moreover, we use CUBE to solve COP-GCCF, the first COP formal-
isation of GCCF that results in a linear number of constraints with respect to
the number of agents. This property is crucial to ensure the scalability of our
approach. Results show that COP-GCCF produces significant improvements with
respect to state of the art algorithms when applied to a realistic graph topology
(i.e., Twitter), both in terms of runtime and memory.

Overall, this thesis provides a novel perspective on important techniques in
the context of MAS (such as CF and constraint optimisation), allowing to solve
realistic problems involving thousands of agents for the first time.
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1

Introduction

Constraint optimisation [33] represents a fundamental technique that allows to
address a wide variety of optimisation problems in several contexts. Constraint
optimisation techniques have been successfully employed in Multi-Agent Systems
(MAS) [23] to face a number of multi-agent coordination challenges such as plan-
ning, scheduling, resource allocation [55, 76] and satellite management [9]. In this
thesis we focus on coalition formation, a particular application of constraint opti-
misation that represents one of the key approaches for coordination in MAS [23].

1.1 Coalition formation

Coalition Formation (CF) [97] aims at establishing collaborations in MAS with
multiple entities provided with common or individual objectives. It involves the
coming together of multiple, possibly heterogeneous, agents into groups, called
coalitions, in order to achieve either their individual or collective goals, whenever
they cannot do so on their own. For instance, in mobile sensor network applications,
the optimal approach to patrol an area suggests to combine capabilities of different
types of unmanned vehicles (aerial, ground, underwater) rather than using only
one type. While this example involves agents that are fully cooperative (i.e., will
forego their own benefit for the common good), in many cases, the agents act in a
self-interested way (e.g., in collective energy purchasing where each user is meant
to pay a fair price for its energy consumption), posing the problem of splitting the
reward/cost resulting from the collaboration.

Building upon the seminal work of Shehory and Kraus [104], Sandholm et al.
[97] identify the key computational tasks involved in the CF process. As a first
step, it is necessary to define a performance measure for each group of agents by
means of a particular function, called characteristic function, which associates each
possible coalition to a value. Such value quantifies how well or bad a given group
of agents performs together, and it is strongly related to the specific domain of
application. For example, in the collective energy purchasing scenario [16, 44, 114]
the value associated to a group of agents is the total cost of the energy that they
consume as a collective. In ridesharing contexts [13, 19, 20], coalitions represent
groups of commuters sharing the same car in order to travel together and reduce
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costs, hence the coalitional value is defined as the total travel expenses (e.g., fuel
consumption, time costs) of a given car. In task assignment scenarios [70], the
characteristic function models the reward associated to the tasks that are executed
by a particular team of agents.

The classic formulation of CF assumes that the values of all the coalitions
are stored in memory as a table [97]. Even if this assumption provides several
advantages in terms of generality (i.e., the characteristic function can be of any
form) and runtime performance (i.e., values can be retrieved in constant time), it
suffers from one fundamental drawback that has prevented the application of CF
techniques in real-world applications. In fact, this approach requires an exponential
amount of memory to store all the values associated to the 2n possible coalitions,
which represent the actual input to the CF problem.

Once the coalitional values have been defined, the second fundamental aspect of
CF involves the computation of the best partition (denoted as coalition structure)
of the set of agents, i.e., the one that maximises (or minimises, in the case of a min-
imisation problem) the sum of the values of the associated coalitions. Such problem
is denoted as Coalition Structure Generation (CSG), and it is equivalent to the
complete set partitioning problem [121]. As a consequence, the number of possible
coalition structures is equal to the number of ways in which a set of n agents can
be partitioned, i.e., the nth Bell number. Such quantity grows exponentially with
respect to n (i.e., Ω(( n

ln(n) )n) [10]), therefore the CSG problem is generally un-

tractable for large-scale instances. In addition, notice that CSG inherits the space
complexity of the above discussed characteristic function representation. For this
reason, state of the art algorithms that solve the general CSG problem are limited
to a few tens of agents, and, to the best of our knowledge, they have never been
applied to realistic CF scenarios.

The final step of the CF process, i.e., payment computation, aims at finding
the transfer or payment to each agent to ensure it is adequately rewarded for its
contribution to its coalition. As an example, in scenarios in which each coalitional
value represents a collective cost (e.g., collective energy purchasing or ridesharing),
payments dictate how such cost should be partitioned among the members the
coalition. Payments play a crucial role in environments involving agents that are
not fully cooperative, i.e., they are interested in the maximisation of their private
benefit rather than acting for the common good. As such, payments have to be
distributed to the agents according to their bargaining power [24].

These topics have been extensively studied in the cooperative-game theory lit-
erature, and a crucial concept in these settings is stability. In particular, stability
ensures that agents will not deviate from the provided coalitions to different ones
that are better from their individual point of view. In cooperative game-theory,
stability has been defined with several concepts, including the stable set, the nu-
cleous, the kernel, and the core [24]. The core is one of the most widely studied
stability concepts, since it ensures a particularly strong and useful property that
guarantees that no coalition can improve upon the considered payment allocation.
However, computing payments that are core-stable has an exponential complexity
with respect to the number of agents, and hence, it is not suitable for large-scale
systems. Moreover, it is not guaranteed that core-stable solutions always exist [24].
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The challenges discussed above represent the main objects of study this thesis,
whose main contributions will be discussed in the following sections.

1.2 Graph-constrained CF

The standard formulation of the above discussed problems assumes that every
coalition is valid and can be part of the final solution. However, in many real-
world applications, there are constraints that may limit the formation of some
coalitions [93, 116, 117]. For instance, anti-trust laws prohibit the formation of
certain coalitions of companies to prevent oligopolies, or cardinality constraints
may be introduced to either prohibit or allow coalitions of certain sizes [104].
Following the work of Myerson [81] and Demange [37], and more recent work by
Voice et al. [117], in this thesis we focus on a specific type of constraints that
encodes synergies or relationships among the agents and that can be expressed by
a graph, where nodes represent agents and edges encode the relationships between
the agents. In this setting, edges enable connected agents to form a coalition and
a coalition is considered feasible only if its members represent the vertices of a
connected subgraph. Such constraints are present in several real-world scenarios,
such as social or trust constraints (e.g., energy consumers who prefer to group with
their acquaintances in forming energy cooperatives [16, 114], or commuters sharing
rides with their friends [13, 19, 20]), and physical constraints (e.g., emergency
responders may join specific teams in disaster scenarios where only certain routes
are available). Hereafter, we shall refer to the CF problem where coalitions are
encoded by means of graphs as Graph-Constrained Coalition Formation (GCCF).
Notice that the addition of these constraints does not lower the complexity of the
problem. In particular, Voice et al. [116] show that the GCCF problem remains
NP-complete.

In this thesis, we are primarily interested in developing GCCF solutions that
are deployable in the real world. Hence, our main objective is to develop an al-
gorithm that can solve problems using real-world data (rather than focusing on
purely synthetic environments) in scenarios involving hundreds or thousands of
agents, such as collective energy purchasing [16, 114] and ridesharing [13, 19, 20].
To achieve this objective, one of the fundamental contributions of this thesis is
to exploit the structure of such scenarios in order to formulate the corresponding
characteristic functions as closed-form expressions. As a consequence, we can com-
pute each coalitional value only when needed, without the necessity of storing the
entire characteristic function in memory. This allows us to avoid the exponential
memory requirements inherent in the standard representation of such function.

In our first domain of interest, i.e., the collective energy purchasing scenario,
agents form coalitions to buy energy together at cheaper prices. Specifically, each
agent is characterised by an energy consumption profile that represents its energy
consumption throughout a day. The characteristic function of a coalition of agents
is the total cost that the group would incur if they bought energy as a collective
in two different markets: the spot market, a short term market (e.g., half hourly,
hourly) intended for small amounts of energy; and the forward market, a long
term one in which larger amounts of energy (spanning weeks and months) can be
bought at cheaper prices.
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Such a scenario involves a thoughtful commitment by the agents belonging to
a group, due to the purchasing of a significant amount of goods (i.e., energy in
this particular case). Henceforth, it is reasonable to assume that agents may desire
to participate to such contract along with trusted people, i.e., people engaged in
a social connection. On these premises, it is natural to formalise the collective
energy purchasing as a GCCF, in which purchasing groups are formed in order to
establish a friend-of-friend relationship among their members.

1.3 Search-based GCCF

We propose a novel search-based approach to solve GCCF that employs the con-
cept of edge contraction. Intuitively, the contraction of an edge of the graph rep-
resents the merge of the corresponding coalitions, as Figure 1.1 shows.
Edge contraction is the fundamental operation that allows us to represent the
entire space of possible solutions (i.e., all the feasible coalition structures) of the
GCCF problem. More precisely, we propose a technique to model such solution
space as a rooted tree, in which each feasible coalition structure is represented
exactly once. Moreover, we theoretically prove the completeness and the absence
of any redundancy in our model.

Such search tree can then be explored with any known traversal technique [26].
We adopt a Depth-First Search (DFS) approach, since it is characterised by polyno-
mial memory requirements. Crucially, since we consider closed-form characteristic
functions (hence avoiding the exponentiality inherent in the classic formulation of
CF), the memory requirements of our approach are polynomially bounded. This
property allows us to tackle large-scale problems with thousands of agents, in con-
trast with previous GCCF approaches. Notice that, ideally, we could compute the
optimal solution of any GCCF problem by traversing the entire tree and return the
feasible coalition structure that maximises the sum of the corresponding coalitions.
Nonetheless, even for sparse graphs the number of feasible coalition structures can
be very large, making a complete traversal of the search space not affordable.

Against this background, we propose a technique that helps prune significant
parts of the search space when the characteristic function belongs to a general class
of functions (denoted as m+a) which can be seen as the sum of a superadditive and
a subadditive part [86]. Such method is then employed within CFSS, our branch
and bound algorithm to compute the optimal solution for any GCCF problem

{a1}

{a2}

{a3}

(a) Before contraction.

{a1, a3} {a2}

(b) After contraction.

Fig. 1.1: Example of an edge contraction.
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based on an m+a function. CFSS achieves a significant performance improvement
with respect to the plain DFS algorithm discussed above, by generating only a
minimal portion of the solution space (i.e., less than 0.32% in our experiments).
We show that the family of m+a functions is expressive enough to model realistic
CF scenarios, including collective energy purchasing. Moreover, we discuss two
other applications for m + a functions, i.e., edge sum with coordination cost [29,
38] and coalition size with distance cost.

CFSS also serves as an anytime approximate algorithm, by stopping the search
after a predefined time budget. This enables the computation of approximate so-
lution for large-scale GCCF instances, for which the computation of the optimal
solution is not feasible. Furthermore, CFSS is the first approach that can provide
quality guarantees on such solutions, expressed by means of measure that quanti-
fies the maximum amount by which the approximate solution can be worse with
respect to the optimal one [4].

Our empirical evaluation considers both realistic and synthetic network topolo-
gies, i.e., Twitter [69], scale-free networks [1] and community networks [67]. Results
show that CFSS outperforms DyCE [117], the state of the art algorithm, when ap-
plied to the above mentioned realistic functions, i.e., the edge sum with coordina-
tion cost, the collective energy purchasing and the coalition size with distance cost
functions. Specifically, CFSS is at least 3 orders of magnitude faster than DyCE
in the first scenario, while solving bigger instances for the remaining two. Finally,
our algorithm provides approximate solutions with good quality guarantees (i.e.,
whose values are at least 88% of the optimal) for systems of unprecedented scale
(i.e., more than 2700 agents).

1.4 Social ridesharing

In the above discussed scenarios, we have addressed CF problems by considering a
type of constraints induced by a graph connecting the agents. On the other hand,
in many realistic applications the formation of coalitions may also be influenced by
constraints of different nature. For instance, if coalitions are mapped to physical
objects with limited capacity, it is natural to enforce a constraint on the cardinal-
ity of such coalitions [104]. A straightforward real-world example is ridesharing, in
which agents model users that need to commute across a geographical space (usu-
ally within a city), and coalitions represent cars that are shared among multiple
agents with the objective of reducing travel costs, by sharing rides. In this case,
the cardinality of coalitions is limited by the number of seats in each car, which
is usually quite low (e.g., 5 seats [120]). In particular, we focus on a ridesharing
scenario that involves a set of agents, connected through a social network, which
necessitate to commute within a urban environment. In this context, agents ar-
range one-time rides at short notice (Figure 1.2), travelling together with friends,
in contrast with complete strangers. This assumption is motivated by a clear ten-
dency among ridesharing companies, which favour the formation of groups of users
that are connected in such network. In fact, Uber and Lyft incentivise users to share
rides with their friends, showing that social relationships play a central role in the
ridesharing scenario, which is consequently referred as Social Ridesharing (SR).
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The SR scenario can be naturally modelled as a GCCF problem, where the set
of feasible coalitions is restricted by a graph (i.e., the social network) and by some
additional feasibility constraints, e.g., the number of members of each coalition
cannot exceed the number of seats of the corresponding cars.

S3

S2

S1

a1

a2

a3

a4

a5

a6

S1 = {a1, a2}
S2 = {a3, a4}
S3 = {a6, a5}

CS = {S1, S2, S3}

Fig. 1.2: Social Ridesharing with 6 agents and 3 coalitions (best viewed in colour).

Within such scenario, we first address the optimisation problem of minimising
the total cost of all the cars formed by the system. As a consequence, we define
the value of each coalition as the travel cost of the associated car. Specifically,
we present the first model that encodes the above discussed scenario as a GCCF
problem, and we formally define the value of each coalition on the basis of the spa-
tial preferences of the agents. Subsequently, we generalise our model incorporating
the temporal preferences of the agents, so to allow them to express constraints
on the departure and the arriving time. Our approach allows us to derive efficient
methods for the computation of the path and the departure time of the driver,
which are optimal within the considered model.1 Finally, we show how to solve
the GCCF problem associated to the SR scenario by means of a modified version
of CFSS, i.e., SR-CFSS, which differs from CFSS as it includes the cardinality
constraints deriving from the SR model. Moreover, SR-CFSS employs a different
bounding technique with respect to the original version, since the SR characteristic

1 In general, both these problems are not tractable [64, 74].
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function is not an m + a function. We empirically evaluate SR-CFSS on realistic
datasets for both spatial and social data, i.e., GeoLife by Microsoft Research [123]
and Twitter [69]. Results show that our approach can produce significant cost
reductions (up to −36.22%) and it features a good scalability, computing approx-
imate solutions for very large systems (i.e., up to 2000 agents) and good quality
guarantees (i.e., whose values are at least 71% of the optimal) within minutes.

1.5 Payments for SR

As mentioned above, payment computation is a crucial problem for CF with self-
interested agents (such as the SR scenario we consider here). Hence, we tackle
the problem of splitting the travel costs corresponding to each car among its pas-
sengers. Payoffs (corresponding to cash payments for sharing trip costs) to the
commuters need to be computed given their distinct needs (e.g., shorter/longer
trips), roles (e.g., drivers/riders, less/more socially connected) and opportunity
costs (e.g., taking a bus, their car, or a taxi).

As previously introduced, one key aspect of payment distribution in CF is
the game-theoretic concept of stability, which measures how agents are keen to
maintain the provided payments instead of deviating to a configuration deemed
to be more rewarding from their individual point of view. Here, we induce stable
payments in the context of the SR problem, employing the kernel [31] stability
concept. Kernel-stable payoffs are perceived as fair, since they ensure that agents
do not feel compelled to claim part of their partners payoff. Kernel stability has
been widely studied in cooperative game theory, and various approaches have
been proposed to compute kernel-stable payments [65, 103]. However, state of the
art approaches are not devised for GCCF, leading to inefficiency (i.e., they do
not avoid considering unfeasible solutions) and redundancy (i.e., they consider
coalitions more than once). This drawback severely limit the scalability of the
entire algorithm. In contrast, a better way to tackle this problem is to exploit
the structure of the graph in order to consider only the coalitions that are indeed
feasible, so to avoid any unnecessary computation.

We achieve this by means of the PK (Payments in the Kernel) algorithm [13,
19], our method to compute a kernel-stable allocation, given a coalition structure
that is a solution to the SR problem. In particular, we address the shortcomings
of the state of the art algorithm in real-world scenarios, by designing an efficient
parallel approach that scales up to thousands of agents. Specifically, we benchmark
PK adopting the same realistic environment used for testing SR-CFSS, showing
that our method computes payments for 2000 agents in less than an hour and it is
84 times faster than the state of the art in the best case. Our approach is a practical
solution technique for large-scale systems thanks to a speed-up of 10.6 on a 12-core
machine with respect to the serial approach. Finally, we develop new insights into
the relationship between payments incurred by a user by virtue of its position in
its social network and its role (rider or driver). In general, our experimental results
suggest that the kernel can be a valid stability concept in the context of SR. In
fact, it induces a reasonable behaviour in the formation of groups, which can be
directly correlated with some simple properties of the agents in the system (i.e.,
network centrality and being a driver or a rider).
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1.6 Constraint optimisation for GCCF

The techniques discussed so far perform particularly well under the assumption
that the value of each coalition can be expressed by means of a closed-form function
(i.e., a general expression that, for each coalition, provides its value on the sole
basis of its members), and it is possible to derive a method to compute an upper
bound for such function, in order to apply the branch and bound approaches
discussed above. However, in some GCCF scenarios it may be difficult (or not
possible at all) to meet these premises, hence the application of the CFSS algorithm
may be not convenient in certain settings. As an example, consider a scenario in
which the value of each coalition measures the reward associated to a previously
completed task, e.g., the box-office income generated by a group of actors starring
in a particular movie. In this context, it may be impossible to characterise each
coalitional value by means of a closed-form expression.

Against this background, in the remainder of the thesis we investigate an alter-
native solution method for GCCF. In the optimisation literature, Dynamic Pro-
gramming (DP) [30] historically represents the counterpart approach with respect
to search, especially in the context of GCCF [92, 117]. Moreover, DP-based al-
gorithms represent the state of the art for solving CSG [91] and GCCF [117] in
scenarios that consider a general characteristic function. Such facts warrant the
study of an approach for GCCF based on DP, with the objective of developing a
solution method that overcomes the drawbacks of previously discussed algorithms.

Now, our objective is the development of a DP solution framework for con-
straint optimisation (and, specifically, for GCCF) with a particular focus on the
runtime performance. In recent years, Graphics Processing Units (GPUs) have
been successfully used to speed-up the computation in different applications,
achieving performance improvements of several orders of magnitude [43] in fields
including computer vision [8], human-computer interaction [11], and artificial in-
telligence [110]. In particular, DP has been successfully parallelised on GPUs [22,
46, 56, 87, 109], motivating the study of a GPU-accelerated DP-based solution
method for GCCF. We achieve this objective by observing that GCCF can be
seen as optimisation problems subject to several feasibility constraints. In fact,
GCCF aims at maximising the sum of the coalitional values while enforcing the
constraint that groups must be feasible and disjoint.

Within the constrained optimisation literature, tasks of this nature are usually
defined as Constraint Optimisation Problems (COPs) [33], a general class of prob-
lems that can be used to formalise several optimisation scenarios [32]. A COP is
defined upon a Constraint Network (CN) [33], a theoretical model that encodes a
knowledge-base theory as a graph, in which the nodes represent the variables of the
optimisation problem and the edges encode the functions or relations over subsets
of variables (e.g., clauses for propositional satisfiability, constraints, or conditional
probability matrices for belief networks). Constraint functions are usually repre-
sented as tables, in which each row corresponds to a particular assignment of the
variables in the scope of the function.

Several solution techniques for COPs have been proposed in the literature [33,
78, 79]. Motivated by the above discussion, in this thesis we adopt Bucket Elimi-
nation (BE) [33], a general algorithmic framework that represents one of the most
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important approaches based on DP to solve COPs.2 BE operates on functions in
tabular form by means of a message passing technique that is realised with two
fundamental operations, i.e., composition and marginalisation, which are the most
computationally intensive tasks of the entire algorithm. Such operations are also
the key ingredients in several close variants of the BE framework, including Belief
Propagation (BP) on Junction Trees [71], and Distributed COP techniques such
as ActionGDL [115] and DPOP [89].

Thus, we propose CUBE (CUda Bucket Elimination), a highly parallel imple-
mentation for the composition and marginalisation operations associated to BE.
In the design of CUBE, we aim at developing a high-performance GPU framework
that allows us to deal with the computational effort inherent in the message pass-
ing phase of several BE-based algorithms. To this end, our main objective is to
devise a solution that fulfils three key requirements. First, since BE is a general al-
gorithm that can be applied to several problems, our framework should be likewise
general to allow a wide adoption among different domains. Second, our approach
should be able to achieve a high computational throughput, by means of optimised
memory accesses to avoid bandwidth bottlenecks, a careful load-balancing to fully
exploit the available computational power, and the adoption of well-known paral-
lel primitives [98, 102] to reduce the CPU workload to the minimum. Third, our
solution should tackle large-scale real-world problems, and, hence, it should not
be limited by the amount of GPU global memory.

CUBE achieves the objectives set above by means of a novel preprocessing
algorithm that reorders the rows and the columns of the tables, enabling highly-
optimised memory management. Specifically, we avoid unnecessary, expensive
memory accesses by means of a technique that allows threads to efficiently lo-
cate their input data, and by taking advantage of the fastest memory in the GPU
hierarchy [43]. Moreover, CUBE is not limited by the amount of GPU memory,
as it can process large tables by splitting them into manageable chunks that meet
the memory capabilities of the GPU.

CUBE is then employed to solve COP-GCCF, the first approach that models
GCCF as a COP. Specifically, we propose a COP formalisation that results in a
linear number of constraints with respect to the number of agents. We achieve this
objective by means of a novel method that builds a hierarchy of agents and then
exploits such structure in order to express the features of the GCCF problem while
maintaining a manageable complexity. We formally characterise COP-GCCF and
we prove that it correctly formalises the GCCF problem. Crucially, COP-GCCF
does not require any assumption on the characteristic function, hence allowing us
to solve completely general GCCF instances.

Furthermore, our model is devised to exploit the capability of CUBE to process
incomplete tables, allowing us to avoid the explicit representation of unfeasible
configurations, hence achieving an improved memory footprint. By doing so, we
achieve the benefits of GPU parallelisation in the solution of the general GCCF

2 In the context of this discussion, it is important to note that the complexity of BE
is exponential with respect to the induced width of the CN [33], a parameter closely
related to the number of constraints and to the structure of the COP (e.g., presence
of loops in the CN). For this reason, the formalisation of a particular problem should
result in a COP that yields an induced width of manageable complexity.
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problem. Results show that our approach outperforms state of the art algorithms
on sparse graphs, both in terms of runtime and memory. In particular, COP-GCCF
allows to compute solutions at least one order of magnitude faster than counterpart
approaches using Twitter [69] as a realistic graph topology.

1.7 Organisation of the thesis

This thesis is divided in 4 parts, where the first part discusses background knowl-
edge and the three remaining parts present the contributions of the thesis.

1. In the first part, Chapter 2 defines the main concepts and problems later
discussed in the thesis, and Chapter 3 positions our work with respect to the
existing literature in the areas of CF and constraint optimisation.

2. The second part focuses on Graph-Constrained Coalition Formation. In par-
ticular, Chapter 4 discusses CFSS, our branch and bound algorithm to solve
the GCCF problem, while Chapter 5 shows some real-world applications for
GCCF.

3. In the third part, we discuss Cardinality-Constrained Coalition Formation, and
specifically, the SR scenario. In particular, Chapter 6 details our GCCF model
for SR and how we solve the corresponding GCCF problem with SR-CFSS.
Chapter 7 discusses the payment computation aspect of such scenario.

4. Finally, the fourth part address the GCCF problem in the context of constraint
optimisation. Chapter 8 discusses CUBE, a highly parallel implementation for
the join sum and maximisation operations associated to BE. Chapter 9 defines
COP-GCCF, our COP model for the GCCF problem.

Finally, Chapter 10 draws conclusions and proposes future research directions.

1.8 Publications

All parts of this thesis have been published in prestigious AI journals and top inter-
national conferences. In the context of GCCF, a CF approach for collective energy
purchasing has been introduced in (1). The contents of Chapters 4 and 5 have
been published in (2), whereas the comprehensive approach has been published in
(8). In the context of SR, Chapter 6 has been published in (4), while Chapter 7
has been published in (5). The comprehensive approach has been published in (9).
In the context of constraint optimisation, Chapter 8 has been entirely published
in (3), (6), and (7). Chapter 9 has been published in (10).
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Background

In this section we formally define the main concepts and problems later discussed
in this thesis. In particular, in Section 2.1 we discuss coalition formation. Then, in
Section 2.2 we define constraint optimisation problems, and we discuss the solution
framework we consider, i.e., bucket elimination. Finally, in Section 2.5 we introduce
GPUs, the hardware architecture used to parallelise such framework.

2.1 Coalition formation

In many applications involving multiple entities with common or individual needs,
the formation of groups is fundamental to achieve such objectives [23]. For in-
stance, in ridesharing scenarios, commuters share rides in order to minimise travel
costs and reduce pollutant emissions. In patrolling applications adopting mobile
sensors, it is more effective to combine capabilities of unmanned vehicles of differ-
ent classes, rather than using only one type. These examples also highlight that
agents may be characterised by fully cooperative behaviours (i.e., will forego their
own benefit for the common good), or, in contrast, act as self-interested entities
(e.g., in collective energy purchasing each home is required to pay for the amount
of consumed energy). This may impede the formation of groups as agents would
need to agree on their common actions.

Coalition Formation (CF) is one of the key approaches to create collaborations
in multi-agent systems [23]. Building upon the seminal work of Shehory and Kraus
[104], Sandholm et al. [97] identify the key tasks involved in the CF process:

• Coalitional value calculation: defining a characteristic function which, given a
coalition as an argument, provides its coalitional value.

• Coalition Structure Generation (CSG): partitioning the set of agents into dis-
joint coalitions, with the objective of maximising the sum of their values.

• Payment computation: finding the transfer or payment to each agent to ensure
it is fairly rewarded for its contribution to its coalition.

In what follows, we formally discuss the CSG and payment computation prob-
lems, which are the main focus of this thesis as they usually represent the most
computationally intensive tasks in the CF process.
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2.1.1 Coalition structure generation

The Coalition Structure Generation (CSG) problem [97, 104] takes as input a finite
set of n agents A = {a1, . . . , an} and a characteristic function v : 2A → R, that
maps each coalition S ∈ 2A to its value, describing how much collective payoff
a set of players can gain by forming a coalition. It is important to notice that,
in the standard definition, the input of the CSG problem (i.e., the characteristic
function) is already of exponential size, since it has to represent the values of all
the 2|A| possible coalitions. For this reason, state of the art approaches that solve
standard CSG are characterised by exponential memory requirements, which limit
their application to instances with tens of agents (see Section 3.2.1).

A coalition structure CS is a partition of the set of agents into disjoint coali-
tions. The set of all coalition structures is Π (A). The value of a coalition structure
CS is assessed as the sum of the values of its composing coalitions, i.e.,

V (CS) =
∑
S∈CS

v (S) . (2.1)

CSG aims at identifying CS∗, the most valuable coalition structure, i.e.,

CS∗ = arg max
CS∈Π(A)

V (CS).

The computational complexity of the CSG problem is due to the size of its search
space. In fact, a set of n agents can be partitioned1 in Ω(( n

ln(n) )n) ways, i.e., the

nth Bell number [10], since, in standard CSG, every possible subset of agents is
potentially a valid coalition.

In what follows, we discuss graph-constrained coalition formation, in which the
set of coalition is restricted by a graph.

2.1.2 Graph-constrained coalition formation

In many realistic scenarios, constraints influence the process of coalition forma-
tion [93, 116, 117]. For instance, a physical communication network with a par-
ticular topology may enforce or prevent the formation of certain coalitions, or
cardinality constraints may be introduced to either prohibit or allow coalitions
of certain sizes [104]. Following the work of Myerson [81] and Demange [37], and
more recent work by Voice et al. [117], in this thesis we focus on a specific type
of constraints that encodes synergies or relationships among the agents and that
can be expressed by a graph, where nodes represent agents and edges encode the
relationships between the agents. In this setting, edges enable connected agents to
form a coalition and a coalition is considered feasible only if its members repre-
sent the vertices of a connected subgraph. Such constraints are present in several
real-world scenarios, such as social or trust constraints (e.g., energy consumers
who prefer to group with their acquaintances in forming energy cooperatives [14,
16], or commuters sharing rides with their friends [20]), and physical constraints
(e.g., emergency responders may join specific teams in disaster scenarios where
only certain routes are available).

1 The CSG problem is equivalent to the complete set partitioning problem [121].
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In order to model these settings, Myerson [81] first proposed a definition of
feasible coalition by considering an undirected graph G = (A,E), where E ⊆ A×A
is a set of edges between agents, representing the relationships between them:

Definition 2.1 (feasible coalition). A coalition S is feasible if all of its members
are connected in the subgraph of G induced by S, i.e., for each pair of players
ai, aj ∈ S there is a path in G that connects ai and aj without going out of S.

Thus, given a graph G the set of feasible coalitions is

FC (G) = {S ⊆ A | The subgraph induced by S on G is connected}.

For instance, in the example graph in Figure 2.1, coalition {a1, a4, a5} is feasible,
as the corresponding subgraph is connected. In contrast, {a4, a5} is not feasible,
since a4 and a5 are not connected by an edge.

a1

a2

a3

a4

a5

(a) Feasible coalition

a1

a2

a3

a4

a5

(b) Unfeasible coalition

Fig. 2.1: Feasible vs. unfeasible coalitions, nodes are agents and edges are relation-
ships (e.g., social connections, communication links).

Consequently, a Graph-Constrained Coalition Formation (GCCF) problem is a
CSG problem together with a graph G, where a coalition S is considered feasible
if S ∈ FC (G). In GCCF problems a coalition structure CS is considered feasible
if each of its coalitions is feasible, i.e.,

CS (G) = {CS ∈ Π (A) | CS ⊆ FC (G)}.

Hence, the goal for a GCCF problem is to identify CS∗, which is the most valuable
feasible coalition structure, i.e.,

CS∗ = arg max
CS∈CS(G)

V (CS). (2.2)

Notice that CSG represents a particular case of GCCF, i.e., CSG is a GCCF
problem in which G is a complete graph. As a consequence, GCCF is characterised
by the same worst-case complexity of the unconstrained case, i.e., Ω(( n

ln(n) )n).

Now, even if such exponential complexity is not representative of the problems
we are interested to solve (i.e., problems in which G is sparse and, hence, CS (G)
contains a lower number of feasible coalition structures), GCCF remains a hard
problem, i.e., it is NP-Complete [116]. As such, GCCF solution algorithm cannot
solve large-scale instances (see Section 3.2.3).

In the next section, we discuss the second fundamental aspect of CF, i.e.,
payment computation.
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2.1.3 Payment computation

The payment computation problem involves the computation of a payoff vector
x,2 which specifies a payoff x[i] for each agent ai ∈ A as a compensation of their
contributions. This problem has been thoroughly studied in the cooperative-game
theory literature, thus we suggest the reader to refer to the book by Chalkiadakis
et al. [24] for a more extensive discussion of all the technical aspect on this subject.

In the context of this discussion, we are particularly interested in computing
payoff vectors that are efficient and individually rational.

Definition 2.2 (efficiency). Given a coalition structure CS and a payoff vector
x, x is efficient if, for each coalition S ∈ CS, the entire value of S is split among
the members of S, i.e., v (S) =

∑
ai∈S x[i] for all S ∈ CS.

Definition 2.3 (individual rationality). Given a coalition structure CS and a
payoff vector x, x is individually rational if each agent ai receives a payoff x[i]
that is at least the value of its singleton, i.e., x[i] ≥ v ({ai}).

Efficiency and individual rationality are fundamental in any real-world application,
as they formalise natural properties that are often assumed in practice. In fact,
efficiency expresses the principle that no portion of the value of S should be wasted.
On the other hand, individual rationality states that a rational agent does not join
a group if such action does not produce a reward.

Furthermore, computing payments that are stable is of utmost importance
in systems with selfish rational agents, i.e., agents who are only interested in
the maximisation of their payoffs [24]. As such, payoffs have to be distributed
among agents to ensure that members are rewarded according to their bargaining
power [24]. In particular, stability ensures that agents will not deviate from the
provided solution to a different one that is better from their individual point of
view. In cooperative game-theory, stability has been defined with several concepts,
including the stable set, the nucleous, the kernel, and the core [24]. The core is
one of the most widely studied stability concepts, since it ensures a particularly
strong and useful property that grants that no subset of A can improve upon the
considered payoff vector.

Definition 2.4 (the core). A payoff vector x is core-stable if it satisfies efficiency
and coalitional rationality, i.e., x (S) ≥ v (S) for all coalitions S ⊆ A, where x (S)
refers to the sum of the payments of the members of S, i.e., x (S) =

∑
ai∈S x[i].

It is easy to prove that core-stability implies efficiency, in a sense that any core-
stable payoff vector maximises the social welfare, i.e., the sum of all the coalitions.
As said above, the core is a very strong stability concept, but its computation has
an exponential complexity with respect to the number of agents. As such, it is not
suitable for large-scale systems. Furthermore, it is not guaranteed that core-stable
solutions always exist [24]. For the above reasons, in this thesis we focus on the
kernel.

2 A payoff vector can also be referred as payoff allocation.
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2.1.4 The kernel

The kernel is a stability concept introduced by Davis and Maschler [31]. A key
feature of the kernel is that it is always non-empty. Moreover, there are polynomial-
time approaches that can compute an approximation of the kernel when the size of
coalitions is limited [19, 65]. The kernel provides stability within a given coalition
structure, and under a given payoff allocation, by defining how payoffs should be
distributed so that agents cannot outweigh (cf. below) their current partners, i.e.,
the other members of their coalition. It is easy to see that the kernel provides a
notion of stability which is weaker with respect to the core, as it is limited within
single coalitions.

In order to define the kernel, we first define the excess of a coalition S with
respect to a given payoff vector x as e (S, x) = v (S)−x (S). In the kernel, a positive
excess is interpreted as a measure of threat: in the current payoff distribution, if
some agents deviate by forming coalition with positive excess, they are able to
increase their payoff by redistributing the coalitional excess among themselves.
On the basis of the excess, we define the notion of surplus.

Definition 2.5 (surplus). Given a coalition structure CS and a coalition S ∈
CS, we consider ai, aj ∈ S. Then, the surplus sij of ai over aj with respect to a
given payoff configuration x, is defined by

sij = max
S′∈2A

ai∈S′,aj /∈S′

e (S′, x) , (2.3)

In other words, sij is the maximum of the excesses of all coalitions S′ that include
ai and exclude aj , with S′ not in the given coalition structure CS (since under CS
agents ai and aj belong to the same coalition S). We say that agent ai outweighs
agent aj if sij > sji. When this is the case, ai can claim part of aj ’s payoff by
threatening to walk away (or to expel aj) from their coalition. When any two
agents in a coalition cannot outweigh one another, the payoff vector lies in the
kernel – i.e., it is stable. Importantly, the set of kernel-stable payoff vectors is
always non-empty [24].

Stearns [108] provides a payoff transfer scheme which converges to a vector in
the kernel by means of payoff transfers from agents with less bargaining power to
their more powerful partners, until the latter cannot claim more payoff from the
former. Unfortunately, this may require an infinite number of steps to terminate.
To alleviate this issue, Klusch and Shehory [65] introduced the ε-kernel in order to
represent an allocation whose payoffs do not differ from an element in the kernel
by more than ε. Formally, the authors propose a truncated (i.e., requiring O (n)3

iterations) payoff transfer scheme, which computes a payoff vector x such as

max(ai,aj)∈A2 (sij − sji)
V (CS)

≤ ε.

3 This result expresses the complexity with respect to the size of the input (i.e., n) only.
A more detailed discussion on how ε also affect the number of iterations is provided
by Shehory and Kraus [103].



20 2 Background

Notice that both GCCF and the computation of kernel-stable payments are optimi-
sation problems subject to several feasibility constraints. This is particularly clear
by looking at Equations 2.2 and 2.3. On the one hand, Equations 2.2 highlights
how GCCF aims at maximising the sum of the coalitional values while enforcing
the constraint that coalitions must be feasible and disjoint. On the other hand,
Equation 2.3 seeks the coalition that results in the maximum excess among all
the ones that contain ai but exclude aj . Such problems are usually referred as
constraint optimisation problems, which we discuss in the following section.

2.2 Constraint optimisation problems

A Constraint Optimisation Problem (COP) is defined upon a Constraint Network
(CN) [33], a theoretical model that encodes a knowledge-base theory as several
functions or relations over subsets of discrete variables (e.g., clauses for proposi-
tional satisfiability, constraints, or conditional probability matrices for belief net-
works).

Definition 2.6 (constraint network). A constraint network consists of a set
X = {x1, . . . , xn} of n discrete variables such that x1 ∈ D1, . . . , xn ∈ Dn, where
Di represents the domain of the variable xi, together with a set of m constraints
{C1, . . . , Cm}.

Definition 2.7 (constraint). A constraint Ci is a relation defined on a set Xi =
{xi1 , . . . , xih} of h discrete variables, called the scope of the constraint, such that
Xi ⊆ X. Such a relation denotes the variables simultaneous legal assignments.
Non-legal assignments are denoted as unfeasible.

A particular CN corresponds to a Constraint Satisfaction Problem (CSP), which
can be generalised obtaining a COP.

Definition 2.8 (constraint satisfaction problem). Given a CN, the corre-
sponding constraint satisfaction problem requires to find a variable assignment
ā∗ = (a∗1, . . . , a

∗
n) satisfying all the constraints in the CN.

x1

x2 x3

x4

x5 x6

(a) CN.

x1

x2 x3

x4

x5 x6
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F
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F
2
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F
25 F 35

F56

(b) COP.

Fig. 2.2: Example CN and the corresponding COP.
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Definition 2.9 (constraint optimisation problem). A constraint optimisa-
tion problem is a CN augmented with a set of functions. Let F1, . . . , Fl be l real-
valued functional components defined over the scopes Q1, . . . , Ql, Qi ⊆ X, let
ā = (a1, . . . , an) be an assignment of the variables, where ai ∈ Di. The global cost

function F is defined by F (ā) =
∑l
i=1 Fi (ā) , where Fi (ā) means Fi applied to the

assignments in ā restricted to the scope of Fi. Solving the COP requires to find
ā∗ = (a∗1, . . . , a

∗
n), satisfying all the constraints, such that F (ā∗) = maxāF (ā) (or

F (ā∗) = mināF (ā), in case of a minimisation problem).

Figure 2.2a shows an example CN with X={x1, x2, x3, x4, x5, x6}, while the cor-
responding COP is shown in Figure 2.2b. Cost functions are usually encoded as
tables, in which each row represents a variable assignment and its resulting value.

Definition 2.10 (complete (resp. incomplete) tables). A cost function Fi
is complete if unfeasible assignments are explicitly represented with −∞ (+∞ in
case of a minimisation problem) values. In contrast, if unfeasible assignments are
not represented at all, Fi is said to be incomplete.

COPs are a general class of problems, which can be used to model several optimi-
sation scenarios [32]. COPs can be solved using diverse techniques ranging from
search-based approaches to Dynamic Programming (DP) (see Section 3.4). In the
context of this discussion, it is important to note that the complexity of such al-
gorithms is dominated by a parameter known as induced width, which encodes the
complexity of the COP and which is closely related to the number of constraints
and the structure of the CN (e.g., presence of cycles). In order to formally define
the induced width, we first introduce some background concepts [33].

Definition 2.11 (ordered graph). Given a graph G corresponding to a CN, an
ordered graph is a pair (G, o) where o is an ordering of the nodes of G.

x1

x2

x3

x4

x5

x6

(a)

x1

x2

x3

x4

x5

x6

(b)

x5

x1

x2

x3

x4

x6

(c)

Fig. 2.3: Induced graphs of the CN in Figure 2.2a with different orderings.
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Definition 2.12 (width of a graph). Given an ordered graph (G, o), the width
of a node is its number of parents. The width of the ordering o is the maximum
width over all nodes. The width of the graph G is the minimum width over all the
possible orderings of the graph.

Definition 2.13 (induced graph). Given an ordered graph (G, o), the corre-
sponding induced graph (G∗, o) is an ordered graph obtained as follows. The nodes
of G are processed from last to first (top to bottom) along o. When a node is
processed, all of its parents are connected.

Definition 2.14 (induced width). The induced width of an ordered graph
(G, o), denoted as w∗ (o), is the width of the induced ordered graph (G∗, o). The
induced width of a graph G is the minimal induced width over all its orderings.

Notice that computing the induced width of a graph with a brute-force approach
requires to explore all the possible n! orderings, where n is the number of variables
in the CN. In general, computing the optimal ordering o∗ that results in the
minimal induced width is NP-Complete [33]. For this reason, a greedy procedure
(Algorithm 1) [33] is usually adopted to compute a variable ordering of acceptable
quality. Algorithm 1 can be parametrised with different metric (·) functions that
evaluate each node on the basis of different properties. The most commonly used
are the min-degree heuristic (in which metric (xi) is the number of neighbours of
xi) and the min-fill heuristic (in which metric (xi) is the number of edges that
need to be added to the graph due to the elimination of xi).

In the next section, we discuss the algorithmic framework we consider to solve
COPs, i.e., bucket elimination.

2.3 Bucket elimination

Bucket Elimination (BE) is a general algorithmic framework that adopts DP to
incorporate many reasoning techniques. In particular, here we focus on the version
of BE that solves COPs. Specifically Algorithm 2 describes the BE approach fol-
lowing Dechter [33]. Such an algorithm operates on the basis of a variable ordering
o, which is used to partition the set of functions into n sets B1, . . . , Bn called
buckets, each associated to one variable of the COP. In particular, each function
Fi is placed in the bucket associated to the last bucket that is associated with a
variable in Qi, i.e., the scope of Fi. Figure 2.4 shows the buckets corresponding to
the example COP in Figure 2.2b, adopting the ordering o = 〈x1, x3, x2, x5, x4, x6〉.

Algorithm 1 GreedyOrdering (CN,metric (·))
1: for all k ← n down to 1 do
2: x∗ = arg minxi∈X metric (xi)
3: o[k]← x∗

4: Introduce edges in CN between all neighbours of x∗

5: Remove x∗ from CN
6: return o
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Algorithm 2 BucketEliminationCOP (CN, F1, . . . , Fl, o)

1: Partition {C1, . . . , Cm} and {F1, . . . , Fl} into n buckets according to o
2: for all p← n down to 1 do
3: for all Ck, . . . , Cg over scopes Xk, . . . , Xg, and

for all Fh, . . . , Fj over scopes Qh, . . . , Qj , in bucket p do
4: if xp = ap then
5: xp ← ap in each Fi and Ci
6: Put each Fi and Ci in appropriate bucket
7: else
8: Up ←

⋃
iXi − {xp}

9: Vp ←
⋃
iQi − {xp}

10: Wp ← Up ∪ Vp
11: Cp ← πUp (ongi=1 Ci)
12: for all tuples t over Wp do

13: Hp (t)← ⇓ap : (t,ap) satisfies {C1,...,Cg}
⊕j

i=1 Fi (t, ap)

14: Place Hp in the latest lower bucket mentioning a variable in Wp,
and Cp in the latest lower bucket with a variable in Up

15: Assign maximising values for the functions in each bucket
16: return ā∗

Then, buckets are processed from last to first (top to bottom), by means of two
fundamental operations, i.e., composition (denoted as ⊕) and marginalisation (de-
noted as ⇓), which will be discussed hereafter. Specifically, all the cost functions in
Bp, i.e., the current bucket, are composed with the ⊕ operation, and the result is
the input of a ⇓ operation. Such operation removes xp (i.e., the variable associated
to Bp) from the table, and produces a new function Hp that does not involve xp,
which is then placed in the last bucket that is associated to a variable appearing
in the scope of the new function.

{F56}B6:

{F14, F24}B4:

{F25, F35}B5:

{F12, F23}B2:

{F13}B3:

{}B1:

Fig. 2.4: Initial buckets.

{F56 (x5, x6)}B6:

{F14 (x1, x4) , F24 (x2, x4)}B4:

{F25 (x2, x5) , F35 (x3, x5) , H6 (x5)}B5:

{F12 (x1, x2) , F23 (x2, x3) , H5 (x2, x3) , H4 (x1, x2)}B2:

{F13 (x1, x3) , H2 (x1, x3)}B3:

{H3 (x1)}B1:

⇓

⇓⊕

⇓⊕

⇓⊕

⇓⊕

Fig. 2.5: BE execution.
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Figure 2.5 shows the execution of BE on the previous example. In particular, if a
bucket, say B4, contains more than one Fi, such functions are first composed with
⊕ and then the corresponding variable (i.e., x4) is marginalised out. In Figure 2.5,
we represent these two subsequent operations by means of the compact notation
⇓⊕. In the case of B4, the result of ⇓⊕ is a function h4 (x1, x2) without x4, which
is placed in B2. By operating in such a way, we can guarantee that the resulting
function in the first bucket (i.e., H3 (x1) in Figure 2.5) contains only the first
variable in o, i.e., x1, since all the remaining ones have been marginalised out during
the previous steps. Hence, we compute the optimal assignment for x1 as the one
that maximises H3 (x1), and propagate such assignment back to the second bucket.
Then, we proceed in the same way as before, computing the optimal assignment for
the corresponding variable, and propagating the result until all buckets have been
processed. Such process terminates when the optimal assignment for all variables
has been computed.

The computational complexity of the BE algorithm is directly determined by
the ordering o, as the following proposition states.

Proposition 2.15. The complexity of BE is time and space exponential in w∗ (o),
the induced width of the problem given the variable ordering o, i.e., O

(
m · kw∗(o)

)
,

where k bounds the domain size and m is the number of constraints.

Proof. The proof is provided by Dechter [33].

The variable elimination scheme realised by BE can be used to solve different
problems, depending on the actual implementation of the ⊕ and ⇓ operators. In
what follows, we discuss how such operators are realised in order to solve COPs.
Then, in Section 2.4 we discuss how a different implementation of such operators
leads to the solution of another interesting problem, i.e., belief propagation.

2.3.1 Composition

We now discuss how the ⊕ composition operator is implemented in Algorithm 2 by
the join sum, an operation closely related to the inner join of relational algebra.
For the remainder of this thesis, tables are represented according to Definition 2.16.
Moreover, if L is a tuple of elements, we refer to its kth element with L[k]. Finally,
for all tuples we adopt the zero-based convention, i.e., tuples start at index 0.

Definition 2.16 (table). A table Ti = 〈Qi, di, Ri, φi〉 is defined by:

• Qi ⊆ X, a tuple of variables called the scope of Ti;
• di, a tuple of natural numbers such that di[k] = Dj is the size of the domain

Qi[k] = xj, where k ∈ {1, . . . , |Qi|};
• Ri, a tuple of rows: in particular, each row Ri[k] is a tuple of natural numbers,

defining a particular assignment of the variables in Qi, where k ∈ {1, . . . , |Ri|};
• φi, a tuple representing the actual values of the function, one for each row

Ri[k]: in particular, φi[k] is the value associated to the variable assignment
represented by Ri[k], where k ∈ {1, . . . , |Ri|}.
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As an example, consider T1 in Figure 2.6. In this case, Q1 = 〈x1, x3, x5, x8〉,
d1 = 〈2, 2, 2, 2〉 (all variables are binary), φ1 = 〈α1, α2, α3, α4, α5, α6〉, and finally

R1 = 〈〈0, 1, 0, 1〉,
〈1, 0, 0, 1〉,
〈1, 1, 0, 1〉,
〈0, 1, 0, 0〉,
〈0, 0, 0, 1〉,
〈1, 1, 1, 1〉〉.

The goal of the join sum is to identify matching tuples and compute the sum of
the respective φ values. As an example, consider the join sum between T1 and T2

(shown in Figure 2.6), with Q2 = 〈x1, x2, x3, x4, x6, x10〉, and Q1 ∩Q2 = 〈x1, x3〉,
representing the shared variables between T1 and T2.4 Notice that some variable
assignments are missing, i.e., T1 and T2 are incomplete (see Definition 2.10).

T1

x1 x3 x5 x8 φ1

0 1 0 1 α1

1 0 0 1 α2

1 1 0 1 α3

0 1 0 0 α4

0 0 0 1 α5

1 1 1 1 α6

⊕
T2

x1 x2 x3 x4 x6 x10 φ2

1 0 0 1 1 0 β1

1 0 1 1 1 0 β2

0 1 0 0 1 1 β3

1 1 0 1 0 1 β4

0 0 0 1 1 0 β5

1 1 1 1 1 1 β6

Fig. 2.6: Original tables T1 and T2 (best viewed in colour).

A row in T1 matches a row in T2 if all the shared variables have the same values in
both the rows (matching rows are highlighted with the same colour in Figure 2.6).
It is important to note that this is a many-to-many relationship, because multiple
rows in the first table can match multiple rows in the second table. For instance

x1 x3 x5 x8 φ1

1 0 0 1 α2
matches

x1 x2 x3 x4 x6 x10 φ2

1 0 0 1 1 0 β1

1 1 0 1 0 1 β4

because they all have x1 = 1 and x3 = 0. Thus, the result table will have a row
for each couple of matching rows in the input tables. In the above example, the
corresponding rows in the result table T⊕ = T1 ⊕ T2 will be

x1 x3 x5 x8 x2 x4 x6 x10 φ⊕
1 0 0 1 0 1 1 0 α2 + β1

1 0 0 1 1 1 0 1 α2 + β4

4 If Q1 ∩Q2 = ∅, the join sum trivially outputs an empty table.
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In particular, these resulting rows are obtained combining the second row of T1

and, respectively, the first and the fourth rows of T2. They both have the same
values for the shared variables (x1 = 1 and x3 = 0). The values of the non-shared
variables (i.e., x5 and x8 for T1, and x2, x4, x6 and x10 for T2) are copied from the
corresponding matching rows. Hence, in the above example, x5 = 0 and x8 = 1 for
both the resulting rows (since there is only one matching row in T1), and x2 = 0,
x4 = 1, x6 = 1 and x10 = 0 for the first resulting row (since it results from the
match with the first matching row in T2), and so on. Thus, the variable set of the
resulting table is the union of the variable sets of the input tables. Finally, the
values of the resulting rows are obtained summing the values of the corresponding
matching rows, i.e., α2 +β1 and α2 +β4. Is it easy to see that if n rows in T1 match
m rows in T2, they will result in n ·m rows in the resulting table (Figure 2.7).

x1 x3 x5 x8 x2 x4 x6 x10 φ⊕
0 0 0 1 1 0 1 1 α5 + β3

0 0 0 1 0 1 1 0 α5 + β5

1 0 0 1 0 1 1 0 α2 + β1

1 0 0 1 1 1 0 1 α2 + β4

1 1 0 1 0 1 1 0 α3 + β2

1 1 0 1 1 1 1 1 α3 + β6

1 1 1 1 0 1 1 0 α6 + β2

1 1 1 1 1 1 1 1 α6 + β6

Fig. 2.7: Join sum result T⊕ (best viewed in colour).

2.3.2 Marginalisation

The second fundamental operation, which implements the ⇓ marginalisation oper-
ator in Algorithm 2, is the maximisation. Suppose that, as a result of the inner join
sum operation at line 13 of Algorithm 2, we obtain the table T shown in Figure 2.8.
Now, suppose that xp = x8. Then, Algorithm 2 requires to maximise such table
marginalising out x8, i.e., removing the column corresponding to x8 and selecting
the maximum value among the ones that refer to the repeated entries. In fact, as
a result of this removal, some rows may now be equal considering the remaining
columns (e.g., R[1] and R[2] both contain 〈0, 0, 0〉 in the first three columns, as
well as R[3] and R[4], which contain 〈1, 0, 0〉). Since one cannot have duplicate
rows, the maximisation operations computes a single row that, as a value, stores
the maximum of the original values.5 The final result is in Figure 2.9.

Composition and marginalisation operators are also employed by modern ver-
sions of BE, e.g., Bucket-Tree Elimination (BTE) proposed by Kask et al. [61].
In the remainder of this thesis, we focus on BE since it was the first version of
these message-passing techniques to tackle constrained optimisation, and its per-
formance is generally comparable with BTE, which, in turn, is optimised for some
specific problems, i.e., singleton-optimality problems.

5 If we marginalise out the variable xi, we maximise over up to di rows.
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x1 x3 x5 x8 φ
0 0 0 0 α1

0 0 0 1 α2

1 0 0 0 α3

1 0 0 1 α4

1 1 0 1 α5

1 1 1 1 α6

Fig. 2.8: Initial table T .

x1 x3 x5 φ⇓
0 0 0 max (α1, α2)
1 0 0 max (α3, α4)
1 1 0 α5

1 1 1 α6

Fig. 2.9: Result of the maximisation.

We now discuss BP on JTs, which is a close variation of BE [33] that is also based
on composition and marginalisation operators (i.e., scattering and reduction).

2.4 Belief propagation on junction trees

Belief propagation on junction trees [71, 88] is an algorithm used to propagate
inference on a Bayesian network.

Definition 2.17 (Bayesian network). A Bayesian Network (BN) [58] encodes
a joint distribution over a set of n random variables X, structured as a Directed
Acyclic Graph (DAG) whose vertices are the random variables and the directed
edges represent the conditional probabilities among the variables, encoded as Con-
ditional Probability Tables (CPTs).

As an example, consider the BN in Figure 2.10a with X = {x1, x2, x3, x4, x5, x6}.
BNs allow to compute various tasks on variables with stochastic nature. For ex-
ample, a BN could represent the probabilistic relationships between diseases and
symptoms. Given symptoms, the BN can be used to compute the probabilities of
the presence of various diseases. Moreover, BNs can be used to find out updated
knowledge of the state of a subset of variables when other variables (i.e., the ev-
idence variables) are observed. BNs are adopted to solve several problems [33],
including i) Belief Propagation (BP), i.e., computing the posterior probability of
each proposition given some evidence, ii) Most Probable Explanation (MPE), i.e.,
given some observed variables, finding a maximum probability assignment of the
rest of the variables, iii) Maximum A Posteriori hypothesis (MAP), i.e., given some
evidence, finding an assignment of a subset of hypothesis variables that maximises
their probability, and finally, iv) given also a utility function, finding an assignment
to a subset of variables that result in the Maximum Expected Utility (MEU).

Here we focus on the BP problem, but our discussion can be easily extended to
the above mentioned tasks, as they adopt similar operations. Several approaches
have been proposed for the propagation of beliefs (or posteriors) [95]. In this thesis,
we consider the BP on Junction Trees (BP on JTs) algorithm, first proposed
by Lauritzen and Spiegelhalter [71]. Such an approach runs over a junction tree, a
particular tree derived from the original BN that fulfils Definition 2.19.

Definition 2.18 (cluster graph). A cluster graph T is built from a given BN
as follows. Each maximal clique in the BN is a node in T . Such nodes are called
clusters. Clusters that share at least one variable are connected by an edge in T .
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Definition 2.19 (junction tree). A Junction Tree (JT) is a particular cluster
graph that fulfils the following properties:

1. Singly connected: there is exactly one path between each pair of clusters.
2. Running intersection: for each pair of clusters Ni and Nj that contain an

element k, each cluster on the unique path between Ni and Nj also contains k.

A JT is generated from a BN by means of moralisation and triangulation [71].
The moralised counterpart of a DAG is constructed by adding edges between all
pairs of nodes that have a common child, and then making all edges in the graph
undirected, as shown in Figure 2.10b. Then, we triangulate the graph by connecting
any two non-successive nodes in any given cycle (Figure 2.10c). Notice that the
obtained graph is guaranteed to be chordal.6

x1 x2

x4

x3 x5

x6

(a) Original BN.

x1 x2

x4

x3 x5

x6

(b) Moralised graph.

x1 x2

x4

x3 x5

x6

(c) Triangulated graph.

Fig. 2.10: Effects of moralisation and triangulation on the BN.

The next step in the creation of the JT involves finding the set of elimination
cliques in the moralised and triangulated graph, which will later represent the
nodes of the JT. This is achieved by means of Algorithm 3. Notice that, similarly
to BE, such an algorithm requires the definition of a variable ordering o, which
affects the creation of the JT, i.e., different orderings can result in different JTs.
Thus, it is possible to obtain different JTs from the same BN. Figure 2.11 shows
the execution of Algorithm 3 on the above example adopting the ordering o =
〈x6, x4, x5, x3, x2, x1〉, which produces the maximal cliques {x2, x5, x6}, {x2, x4},
{x2, x3, x4}, and {x1, x2, x3}.

Algorithm 3 EliminationCliques (G, o)

1: max← ∅ {Initialise the set of maximal cliques}
2: while |o| > 1 do
3: x← o.pop () {Get the first variable in the queue corresponding to o}
4: clq ← maximal clique in G that contains x
5: if @clq′ ∈ max : clq ⊂ clq′ then
6: max← max ∪ clq
7: Remove x from G
8: return max

6 A chordal graph is one in which all cycles of four or more vertices have a chord, i.e.,
an edge that is not part of the cycle but connects two vertices of the cycle.
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x1 x2

x4

x3 x5

x6 x1 x2

x4

x3 x5

x1 x2

x3 x5

x1 x2

x3

Fig. 2.11: Example execution of Algorithm 3 (best viewed in colour).

Such cliques are the nodes of the cluster graph (Figure 2.12a) resulting from the
original BN. In such graph, we label each edge with a weight corresponding to the
number of shared variables between the cliques incident on such edge. Finally, the
maximum-weight spanning tree of the cluster graph (highlighted with bold edges
in Figure 2.12a) is a JT of the original BN,7 as shown in Figure 2.12b. We also
report the shared variables for each pair of cliques on the corresponding edges.

{x2, x3, x5} {x1, x2, x3}

{x2, x4} {x2, x5, x6}

2

1

2

1

1

1

N1 N4

N2 N3

(a) Cluster graph.

{x2, x3, x5}

{x1, x2, x3}{x2, x4}{x2, x5, x6}

N1

N4N2N3

{x
2 , x

3}{x2}{x2
, x

5
}

(b) JT.

Fig. 2.12: Cluster graph and the corresponding JT (best viewed in colour).

Every vertex Ni of such JT contains a set Qi ⊆ X of random variables that forms a
maximal clique in the moralised and triangulated BN, each associated to a potential
table represented by Ti = 〈Qi, di, Ri, φi〉 (according to Definition 2.16). Specifically,
each potential table is obtained by multiplying the appropriate CPTs, i.e., the
CPTs relative to the variables in the scope of the potential table, as discussed in
detail by Lauritzen and Spiegelhalter [71]. As an example, T4, associated to Q4 =
〈x1, x2, x3〉, is the result of p (x1) p (x2 | x1) p (x3 | x1), where p (xi | xj) is the CPT
of xi given xj . Notice that, since CPTs contain a row for each possible assignment
of the variables in their scope, potential tables also inherit this property. In other
words, the tables used in BP are complete (see Definition 2.10), in contrast with
the COP case (cf. Section 2.2). Therefore,

|Ri| = |φi| =
∏|Qi|

k=1
di[k].

7 Such JT is guaranteed to satisfy both properties in Definition 2.19 [27].
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Each Ti encodes the joint probability8 among the random variables in its scope
Qi. Figures 2.13–2.16 show an example of such tables, in which all the variables
are assumed to be binary.

x2 x3 x5 φ1

0 0 0 0.5
1 0 0 0.2
0 1 0 0.1
1 1 0 0.0
0 0 1 0.1
1 0 1 0.0
0 1 1 0.0
1 1 1 0.1

Fig. 2.13: T1.

x2 x4 φ2

0 0 0.4
1 0 0.3
0 1 0.1
1 1 0.2

Fig. 2.14: T2.

x2 x5 x6 φ3

0 0 0 0.1
1 0 0 0.0
0 1 0 0.0
1 1 0 0.1
0 0 1 0.1
1 0 1 0.0
0 1 1 0.5
1 1 1 0.2

Fig. 2.15: T3.

x1 x2 x3 φ4

0 0 0 0.1
1 0 0 0.5
0 1 0 0.0
1 1 0 0.1
0 0 1 0.0
1 0 1 0.0
0 1 1 0.1
1 1 1 0.2

Fig. 2.16: T4.

Assuming that Ti and Tj are potential tables corresponding to adjacent vertices
in the JT, we associate a separator table Sepij = 〈Qij , dij , Rij , φij〉 to the edge
(Ni, Nj), whose scope Qij is represented by the shared variables between the two
tables, i.e., Qij = Qi ∩ Qj . The values for φij can be initialised to any non-zero
constant value (as discussed by Lauritzen and Spiegelhalter [71]), hence we consider
1, as shown in Figures 2.17–2.19.

x2 φ12

0 1.0
1 1.0

Fig. 2.17: Sep12.

x2 x5 φ13

0 0 1.0
1 0 1.0
0 1 1.0
1 1 1.0

Fig. 2.18: Sep13.

x2 x3 φ14

0 0 1.0
1 0 1.0
0 1 1.0
1 1 1.0

Fig. 2.19: Sep14.

BP on JTs is invoked whenever we receive new evidence for a particular set of
variables Y ⊂ X, so to update the potential tables associated to the BN in order
to reflect this new information. To this end, a two-phase procedure is employed:
first, in the evidence collection phase, messages are collected from each vertex Ni,
starting from the leaves all the way up to an arbitrarily designated root vertex
(Algorithm 4). Then, during evidence distribution, messages are distributed from
the root to the leaves (Algorithm 5). In both phases, each recursive call comprises a
MessagePass procedure, which realises the propagation of the evidence between
the potential tables Ti and Tj associated to Ni and Nj , involving two steps:

8 A rigorous application of the principles of statistics would require to normalise the
values of each φi so to verify

∑|φi|−1
j=0 φi[j] = 1. Nonetheless, DeGroot [36] shows that

this is not strictly necessary, and the results of BP is correct even if the normalisation
is executed only at the end of the BP process.
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1. Reduction: the potential table Sepij is updated to Sep∗ij . In particular, each
row of Sep∗ij is obtained summing the corresponding rows of Ti, i.e., the ones
with a matching variable assignment. Reduction implements the ⇓ marginali-
sation operator of BE, which is achieved with a summation in this case.

2. Scattering: Tj is updated with the new values of Sep∗ij , i.e., every row of Tj
is multiplied for the ratio between the corresponding rows in Sep∗ij and Sepij .

Following Zheng and Mengshoel [122], we assume that 0
0 = 0. Scattering em-

ploys the product operation to implement the composition, and it corresponds
to the ⊕ operator of BE.

Algorithm 4 Collect (JT, Ni)

1: for all Nj child of Ni do
2: MessagePass (Ni,Collect (JT, Nj))

3: return Ni

Algorithm 5 Distribute (JT, N0)

1: for all Nj child of N0 do
2: MessagePass (N0, Nj)
3: Distribute (JT, Nj)

4: return Ni

We now show how to execute the BP algorithm in order to update tables T1–
T4 according to the evidence x2 = 0. In the following example, we assume that
the JT in Figure 2.12b is rooted in N1. As a consequence, N2, N3 and N4 are the
leaves of the JT, and hence, they initiate the evidence collection phase. Specifically,
they absorb the evidence by zeroing all the entries corresponding to the rows that
disagree with x2 = 0 (highlighted in grey in Figures 2.20–2.22).

x2 x4 φ2

0 0 0.4
1 0 0.0
0 1 0.1
1 1 0.0

Fig. 2.20: Updated T2.

x2 x5 x6 φ3

0 0 0 0.1
1 0 0 0.0
0 1 0 0.0
1 1 0 0.0
0 0 1 0.1
1 0 1 0.0
0 1 1 0.5
1 1 1 0.0

Fig. 2.21: Updated T3.

x1 x2 x3 φ4

0 0 0 0.1
1 0 0 0.5
0 1 0 0.0
1 1 0 0.0
0 0 1 0.0
1 0 1 0.0
0 1 1 0.0
1 1 1 0.0

Fig. 2.22: Updated T4.
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Then, such nodes construct the messages to be sent upward to N1 by updating
the respective separator tables, which are obtained from the updated potential
tables by marginalising out the variables not shared with T1, i.e., by executing the
reduction step. Specifically, Sep∗12, Sep∗13, and Sep∗14 are respectively obtained by
marginalising out x4, x3, and x1. This operation is almost equivalent to the one
discussed in Section 2.3.2, with the only difference that here we marginalise by
summation, instead of maximising. For the sake of brevity, we directly report the
final Sep

∗
ij/Sepij tables in Figures 2.23–2.25, which result from the ratio between

the updated and the original separator tables. Such ratio is necessary for the
subsequent step of BP, i.e., scattering.

x2
φ∗12/φ12

0 0.5
1 0.0

Fig. 2.23: Sep
∗
12/Sep12.

x2 x5
φ∗13/φ13

0 0 0.2
0 1 0.5
1 0 0.0
1 1 0.0

Fig. 2.24: Sep
∗
13/Sep13.

x2 x3
φ∗14/φ14

0 0 0.6
1 0 0.0
0 1 0.0
1 1 0.0

Fig. 2.25: Sep
∗
14/Sep14.

Finally, N1 completes the evidence collection phase by updating its potential table
using the scattering operation, i.e., each row of T1 is multiplied for the rows of the
updated separator tables that have matching variable assignments. The updated
T1 is shown in Figure 2.26, while its normalised version is shown in Figure 2.27.

x2 x3 x5 φ1

0 0 0 0.5 · 0.5 · 0.2 · 0.6 = 0.030
1 0 0 0.0
0 1 0 0.1 · 0.5 · 0.2 · 0.0 = 0.000
1 1 0 0.0
0 0 1 0.1 · 0.5 · 0.5 · 0.6 = 0.015
1 0 1 0.0
0 1 1 0.0 · 0.5 · 0.5 · 0.0 = 0.000
1 1 1 0.0

Fig. 2.26: Updated T1.

x2 x3 x5 φ1

0 0 0 0.66
1 0 0 0.00
0 1 0 0.00
1 1 0 0.00
0 0 1 0.33
1 0 1 0.00
0 1 1 0.00
1 1 1 0.00

Fig. 2.27: Updated and normalised T1.

The evidence distribution phase is then carried out from the root to the leaves by
employing the same message passing technique. Figures 2.28–2.30 show the final
and normalised tables T2, T3 and T4 after such phase. In particular, notice how
the BP process has erased the probabilities of all the assignments disagreeing with
the evidence x2 = 0. Furthermore, the distribution process has also updated the
potential tables of the leaves according to the new probabilities in the potential of
the root.
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x2 x4 φ2

0 0 0.8
1 0 0.0
0 1 0.2
1 1 0.0

Fig. 2.28: Final T2.

x2 x5 x6 φ3

0 0 0 0.22
1 0 0 0.00
0 1 0 0.00
1 1 0 0.00
0 0 1 0.22
1 0 1 0.00
0 1 1 0.55
1 1 1 0.00

Fig. 2.29: Final T3.

x1 x2 x3 φ4

0 0 0 0.16
1 0 0 0.83
0 1 0 0.00
1 1 0 0.00
0 0 1 0.00
1 0 1 0.00
0 1 1 0.00
1 1 1 0.00

Fig. 2.30: Final T4.

In both BE and BP on JTs, it is easy to see that the composition (⊕) and the
marginalisation (⇓) steps are the most computationally intensive tasks. As a con-
sequence, if such operations are not executed efficiently, the use of these algorithms
is not practical for realistic applications. Thus, it is crucial to implement both ⊕
and ⇓ in a very efficient way. In Chapter 8 we achieve this objective by means of
the CUBE algorithm. Our approach exploits the inherent parallel nature of such
operators, which execute several independent computations spanning over multi-
ple rows of the tables. This characteristic suggests a multi-threaded algorithm in
which such degree of parallelism can be exploited by means of GPUs

2.5 Graphics processing units

GPUs are designed for compute-intensive, highly parallel computations. These
architectures perform particularly well on problems that can be modelled as
data-parallel computations where data elements correspond to parallel process-
ing threads, as GPUs are designed on the basis of the Single Instruction Multiple
Data (SIMD) model [43]. A widely used framework for GPU programming is the
NVIDIA CUDA framework, which provides an Application Programming Interface
(API) that allows the user to employ general purpose programming primitives (e.g.,
memory allocation, code execution, synchronisation) on the GPU. In particular,
data processing is achieved through a particular function, called kernel, executed
in parallel by thousands of threads on different inputs. Threads are grouped into
thread blocks. Threads in the same block share fast forms of storage and synchro-
nisation primitives. A fundamental difference between CPU and GPU hardware
design is that the latter devotes the majority of the transistors to Arithmetic Logic
Units (ALUs) subdivided among thousands of cores (i.e., ∼2000 for the GPUs em-
ployed in the experiments of this thesis). On the other hand, the computational
capabilities of each of these cores are very limited with respect to common CPUs,
as a direct consequence of the fact that, on GPU cores, cache and control hardware
are substantially reduced, as shown in Figure 2.31. For this reason, GPUs usually
do not support branch prediction,9 and thus, branching should be generally avoided
on GPUs. In fact, branching can result in a phenomenon called divergence [52],
which causes the serialisation the threads executing in different branches.

9 Branch prediction aims at guessing which way a branch (e.g., an if-then-else structure)
will go, with the purpose of improving the performance in a pipelined execution model.
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DRAM

Cache

Control ALU ALU

ALU ALU

(a) CPU.

DRAM

(b) GPU.

Fig. 2.31: CPU vs. GPU hardware design (best viewed in colour).

2.5.1 Memory management

The second fundamental aspect of GPU programming is memory management.
Memory plays a crucial role in the design of efficient GPU algorithms, since mem-
ory accesses are particularly expensive and have a significant impact on the perfor-
mance. A comprehensive view of the CUDA memory model is shown in Figure 2.32.
Modern GPUs contain very fast but small-size memories (i.e., registers, cache and
shared memory, which can store up to few tens of kilobytes of data), intended to
assist high performance computations, stacked above a slower but larger memory
(i.e., global memory), suitable to hold large amounts of data (typically ∼4GB).
Furthermore, the architecture provides two forms of read-only memory, i.e., con-
stant and texture memory, designed to store data that is read multiple times during
the computation (e.g., textures in computer vision applications). These memories
can only be populated from the host, i.e., GPU threads cannot write to them.

The use of shared memory (which resides directly on GPU cores and thus, is
characterised by very low latencies), is crucial for high throughput algorithms. To
increase the performance, it is mandatory to exploit such a low latency memory to
store information that needs to be used very often. On the other hand, accessing
global memory is particularly costly (400–800 clock cycles), and should be min-
imised to achieve a good compute-to-memory ratio. To do that, a common practice
suggests to exploit data locality, i.e., transferring small portions of frequently used
data from global to shared memory and to complete all the computational tasks
that use such data before accessing other data. This allows to minimise global
memory accesses. The optimal way of executing such transfers is depicted in Fig-
ure 2.33. In particular, sparse and random accesses to input and output data force
the hardware to serialise each memory operation, with a great impact on the per-
formance, as shown in Figure 2.33a. In contrast, it is desirable to have consecutive
threads fetching data from consecutive memory addresses (Figure 2.33b), which is
denoted as memory coalescing. Coalesced accesses are related to the principle of
locality of information and they allow the hardware to combine multiple transfers
between global and shared memory into a single transaction, avoiding expensive
operations and improving the computational throughput.
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Fig. 2.32: CUDA memory model (best viewed in colour).
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(a) Uncoalesced memory accesses.

Global Shared

thread1←−−−−−−−−−−−→
thread2←−−−−−−−−−−−→
thread3←−−−−−−−−−−−→

...
...

threadi←−−−−−−−−−−−→
...

...
threadn←−−−−−−−−−−−→

(b) Coalesced memory accesses.

Fig. 2.33: Uncoalesced vs. coalesced memory accesses.
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The design of an efficient GPU version of a sequential algorithm is rarely a trivial
task, as all the above aspects need to be carefully taken into account. In fact, most
of the times it is necessary to adopt a different approach, which is specifically
devised for the underlying parallel architecture. On the other hand, GPUs can
result in speed-ups of several orders of magnitude [43] if employed correctly.

2.5.2 Pipelining

The standard pattern of GPU computation requires the whole input to be trans-
ferred to the global memory before starting the kernel execution. The results are
then copied back to the host memory. Such synchronous approach can be improved
if the kernel starts on a partial set of input data, while the transfer is still running.

Figure 2.34 shows the a pipelined model of computation, in which a single GPU
kernel execution has been split into three stages (marked by different colours).
Each kernel Ki executes as soon as the corresponding input data subset has been
transferred by means of H→Di. This solution applies to GPU architectures that
feature only one copy engine (i.e., data between host and device can be transferred
through a single channel only). Data segments are necessarily serialised, thus al-
lowing overlapping between one kernel execution and one data transfer only. In
our experiments, we found that, on average, this approach achieves a performance
improvement of 50% with respect to synchronous data transfers. Most recent and
advanced GPUs (e.g., NVIDIA Kepler) feature an additional copy engine, which
enables a further degree of parallelism between data transfers and computation.
On these architectures, this approach exploits the supplementary channel to over-
lap input and output data transfers (see Figure 2.35). Such pipelined computation
achieves, in our experiments, an improvement of 75% with respect to synchronous
transfers.

Kernels

Transfers H→D1 H→D2 H→D3 D→H1 D→H2 D→H3

K1 K2 K3

Fig. 2.34: Asynchronous data transfers (best viewed in colour).

Device → Host

Kernels

Host → Device H→D1 H→D2 H→D3

D→H1 D→H2 D→H3

K1 K2 K3

Fig. 2.35: Full pipeline (best viewed in colour).
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Related work

In this section, we position the work discussed in this thesis with respect to the
existing literature in the areas of team formation, CF and constraint optimisation.

3.1 Team formation

The problem of forming groups of agents has also been widely studied in the
context of Team Formation, in which several formal definitions of such problem
have been proposed. As an example, Gaston and desJardins [49] devise a heuristic
to modify the graph connecting the agents based on local autonomous reasoning,
without considering any concept of global optimal solution. The problem studied
by Lappas et al. [70] focuses on finding a single group of agents who possess
a given set of skills, so as to minimise the communication cost within such a
group. Marcolino et al. [77] focus on forming a single group of agents that has the
maximum strength in the set of world states. Finally, Liemhetcharat and Veloso
[75] are interested in modelling the values of the characteristic function, based on
observations of the agents.

In this thesis, we address the specific group formation problem in which groups
must form a partition (into disjoint coalitions) of a given set of agents, with the
objective of maximising the sum of the coalitional values. Such problem is equiv-
alent to the complete set partitioning problem [121], i.e., the standard definition
adopted in the CF literature.

3.2 CSG algorithms

The CF literature comprises a number of works that address the CSG problem with
various techniques. In particular, in Section 3.2.1 we describe optimal and approxi-
mate algorithms that solve general CSG, where all coalitions can be formed. Then,
in Section 3.2.2 we discuss the approaches considering CSG scenarios restricted
by the presence of constraints. Specifically, Section 3.2.3 positions our work with
respect to the existing literature about graph-constrained CSG. In Section 3.2.4,
we discuss the approaches based on special characteristic function representations.
Finally, Section 3.2.5 describes heuristic approaches for CSG.
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3.2.1 Complete approaches

A number of algorithms have been developed to solve general CSG. Sandholm et al.
[97] showed that is possible to find a coalition structure whose value is within some
provable bound from the optimal one through an approximation algorithm. The
authors devise a graph organising all possible coalition structures in n levels (where
n is the number of agents), such that level i contains all the solution formed exactly
by i coalitions. Thus, the first level always corresponds to the grand coalition, while
the nth level contains the coalition structure formed by the singletons. Two nodes
of this particular graph are connected if it is possible to obtain one configuration
from the other only by splitting one coalition in two, as shown in Figure 3.1.

{a1, a2, a3, a4}

{a1}{a2, a3, a4} {a1, a2}{a3, a4} {a2}{a1, a3, a4} {a1, a3}{a2, a4} {a3}{a1, a2, a4} {a1, a4}{a2, a3} {a1, a2, a3}{a4}

{a1}{a2}{a3, a4} {a1, a2}{a3}{a4} {a1}{a3}{a2, a4} {a1, a3}{a2}{a4} {a1}{a2, a3}{a4} {a1, a4}{a2}{a3}

{a1}{a2}{a3}{a4}

Fig. 3.1: Graph of coalition structures for A = {a1, a2, a3, a4}.

Sandholm et al. [97] notice that, while exploring the entire graph does not provide
any advantage over the näıve enumeration of all coalition structures, it is possible
to compute a solution whose value is within a factor of 1

n from the optimal by
restrict the search to the first two levels. The proposed algorithm is anytime,
i.e., it can return a valid solution even if interrupted before the completion. This
property is particularly important in the context of CSG, in which the complete
execution takes an unfeasible amount of time for large instances.

Dang and Jennings [28] later improved the scheme proposed by Sandholm et al.
[97], by considering a similar layered-graph representation, but adopting a different
approach to explore such graph that results in better performance. However, their
solutions do not scale (as the associated computational complexity is O (nn)).
Moreover, as discussed by Voice et al. [117], such solutions cannot be employed
to solve CSG for GCCF, since assigning artificially low values (such as −∞) to
infeasible coalitions would not be suitable for assessing valid bounds.

An important strand of literature [90, 91, 121] focused on solutions for CSG
based on Dynamic Programming (DP). In particular, Yun Yeh [121] first proposed
the idea of using DP for CSG, by associating each coalition structure to the best
way of splitting it. Then, by proceeding through a bottom-up approach, the best
splitting of the grand coalition, i.e., the optimal solution of the CSG problem, is
eventually calculated.
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Notice that, as mentioned above, a given coalition structure CS formed by i
coalitions is positioned at level i in the graph in Figure 3.1. Furthermore, all its
possible splittings belongs to levels < i, and are connected to CS by means of a
path. Rahwan and Jennings [90] noticed that some of these paths are redundant
(Figure 3.2), and hence, it is possible to improve the performance of the DP algo-
rithm by pruning them. As a consequence, they proposed the Improved DP (IDP)
algorithm, later extended by Rahwan et al. [91] with the IDP-IP∗ algorithm. IDP-
IP∗ introduce a preliminary step based on Integer Programming (IP) that prunes
the less promising parts of the space search. However, IDP-IP∗ is limited to tens
of agents (30 at most) due to the large memory requirements, as such approaches
need to hold all coalitional values in memory (Θ (2n)) during the computation.

{a1, a2, a3, a4}
V = 140

{a1}{a2, a3, a4}
V = 145

{a1, a2}{a3, a4}
V = 130

{a2}{a1, a3, a4}
V = 140

{a1, a3}{a2, a4}
V = 130

{a3}{a1, a2, a4}
V = 145

{a1, a4}{a2, a3}
V = 135

{a1, a2, a3}{a4}
V = 135

{a1}{a2}{a3, a4}
V = 150

{a1, a2}{a3}{a4}
V = 120

{a1}{a3}{a2, a4}
V = 125

{a1, a3}{a2}{a4}
V = 145

{a1}{a2, a3}{a4}
V = 130

{a1, a4}{a2}{a3}
V = 145

{a1}{a2}{a3}{a4}
V = 140

Fig. 3.2: Dashed paths are redundant with respect to the dotted one.

3.2.2 Constrained approaches

The above-described works focus on unconstrained CF, and they cannot be directly
used in contexts where constraints of various types may limit the formation of
some coalitions. In this respect, Shehory and Kraus [104] first introduced the idea,
arising in many realistic scenarios, of restricting the maximum cardinality k of the
coalitions in CSG, highlighting that, even though this constraint lowers the number
of coalitions from exponential, i.e., 2n, to polynomial, i.e., O

(
nk
)
, the problem

remains NP-hard. Therefore, the authors propose an approximate algorithm with
quality guarantees. However, their approach is devised for scenarios in which all
O
(
nk
)

coalitions are valid, and does not exploit the presence of other types of
constraints, such as constraints induced by a graph (see Section 3.2.3).

Rahwan et al. [93] also considered scenarios in which constraints enforce (or
prohibit) the co-existence of agents in a coalition, introducing the problem of
Constrained Coalition Formation (CCF) to adequately deal with these constraints.
In particular, provide a general formulation of a CCF problem, in which the set
of feasible coalition structure is denoted as CS ⊆ Π (A). Notice that GCCF is a
particular case of CCF problem, in which such set is represented by CS (G), i.e.,
the set of feasible coalition structures induced by a graph (see Section 2.1.2).
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The authors also identify a natural, simpler subclass of CCF, namely Basic
CCF (BCCF), in which the formation of coalition is subject to positive and negative
constraints, providing a specialised solution algorithm. Notice that, even though
the presence of these constraints allows a significant performance improvement,
solving BCCF remains a hard problem.

Formally, the authors define the set of positive (resp. negative) constraints
P ⊆ 2A (resp. N ⊆ 2A) such that a coalition S satisfies a constraint P ∈ P (resp.
N ∈ N ) if P ⊆ S (resp. N 6⊆ S). The solution of a BCCF problem must satisfy
all the positive constraints, and cannot satisfy any of the negative constraints.

As an example, suppose that eight web-service providers A = {a1, . . . , a8}
consider cooperation in order to provide cloud-computing capabilities to a major
client. The client knows from prior experience that certain alliances of companies
are indispensable to perform this task, and these are P = {{a1, a5, a8}, {a2, a5, a7},
{a5, a7, a8}}. Thus, only coalition involving any of these alliances are considered
to be feasible. Furthermore, the client excludes any coalitions involving alliances of
N = {{a1, a2, a3}, {a2, a3, a5}} due to the fact that, from prior experience, these
specific combinations of providers are known to under-perform. At first sight, it
appears that the GCCF and the BCCF problems may be related, since they both
focus on constrained CF. Moreover, it is easy to see that such classes are not
disjoint, since unconstrained CSG can be represented both as GCCF and as BCCF.
Nonetheless, we show that GCCF and BCCF are different problems and hence,
the algorithm for BCCF provided by Rahwan et al. cannot be applied to GCCF.

Proposition 3.1. GCCF games are not a subset of BCCF games, and BCCF
games are not a subset of GCCF games.

Proof. There are GCCF games which are not BCCF games

Our first example is a GCCF game with three agents A = {a1, a2, a3}. The set
of edges of G is E = {(a1, a2) , (a2, a3)}. Thus, the set of feasible coalitions is
FC (G) = {{a1}, {a2}, {a3}, {a1, a2}, {a2, a3}, {a1, a2, a3}}, that is, the only non-
feasible coalition is {a1, a3}. We will now show that this game cannot be en-
coded as a BCCF game. We show this by contradiction: let us assume that the
above game can be encoded as a BCCF game. Since the single element coali-
tions {a1}, {a2}, {a3} are feasible, the set of positive constraints P should include
{a1}, {a2}, {a3}. Since the grand coalition {a1, a2, a3} is feasible, the set of nega-
tive constraints N should be empty. Since there are feasible coalitions with one,
two, and three elements, the set of allowed sizes should be S = {1, 2, 3}. It is easy
to see that coalition {a1, a3} is feasible on the candidate BCCF game, and thus
that our example GCCF game is not a BCCF game.

There are BCCF games which are not GCCF games

Our second example is a BCCF game with two agents A = {a1, a2}. The set of
positive constraints P is {{a1}}, the set of negative constraints N is empty and
the set of allowed sizes is just S = {2}. Thus, the set of feasible coalitions is
FC (G) = {{a1, a2}}. Assume that we can encode this game as a GCCF game.
Since in every GCCF game the singletons are feasible, we have a contradiction.
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Thus, the relationship between GCCF and BCCF is represented in Figure 3.3.

CCF

GCCF BCCFCSG

Fig. 3.3: Relationships between the CCF families (best viewed in colour).

3.2.3 Graph-constrained approaches

Voice et al. [116, 117] were the first to propose algorithms for the GCCF problem.
Specifically, the approach presented in [116] focuses on scenarios fulfilling the In-
dependence of Disconnected Members (IDM) property. The IDM property requires
that, given two disconnected agents ai and aj , the presence of agent ai does not
affect the marginal contribution of agent aj to a coalition. In this setting, Voice et
al. [116] propose a solution algorithm that iterates over the connected components
of all the acyclic subgraphs of the graph G = (V,E). Due to the IDM property,

this method computes the optimal solution within O(|V |2
(|V |+|E|
|V |

)
) operations,

and such complexity can be reduced to linear for graphs with bounded treewidth.
However, the IDM property is rather strong for real-world applications. As

noticed by Shehory and Kraus [104] considering task allocation, the addition of
a new agent to a coalition could result in intra-coalition coordination and com-
munication costs, which increase with the size of the coalition. Hence, realistic
functions capturing such costs (such as the ones in Section 4.3) do not satisfy the
IDM property, hence this approach cannot be applied.

On the other hand, the DyCE algorithm [117] uses DP to find the optimal coali-
tion structure by progressively splitting the current solution into its best partition.
DyCE considers only the partitions that correspond to feasible coalition structures
by adopting the SlyCE algorithm (also proposed by Voice et al. [117]) as a subrou-

tine. Specifically, SlyCE solves the problem of enumerating all the k̂-subgraphs of
G, i.e., the set of connected subgraphs of G with at most k nodes (see Section 7.2).
Voice et al. [117] also provide a parallelised version of SlyCE, i.e., D-SlyCE. DyCE
is not an anytime algorithm and requires an exponential amount of memory in the
number of agents (i.e., Θ (2n)). Hence, the scalability of this approach is limited
to systems consisting of tens of agents (around 30). Moreover, DyCE cannot be
efficiently parallelised due to its exponential memory requirements.
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3.2.4 Approaches based on special characteristic function
representations

The classic formulation of the CF problem assumes that each coalitional value
is stored in memory, and can be accessed in constant time. Unfortunately, this
approach requires an exponential amount of memory, i.e., Θ (2n), limiting its ap-
plicability to systems with tens of agents. Thus, a number of works [25, 42, 57, 84,
111, 112, 113] have examined alternative characteristic function representations,
which allow to overcome the intractability due to the size of the input and to re-
duce the computational complexity of the associated CF problems [51, 112]. One
strand of literature [84, 113] has focused on CSG algorithms for coalitional games
that can be modelled as Marginal Contribution (MC) networks [57], avoiding the
exponentiality of the input representation in some particular scenarios. The ba-
sic idea behind MC networks is to represent coalitional games using sets of rules,
which follows the syntax pattern → value. A rule is said to apply to a coalition
S if S meets the requirement of pattern. In the basic scheme, these patterns are
conjunctions of agents, and S meets the requirement of the given pattern if S is
a superset of it. The value of a group of agents is defined to be the sum over the
values of all rules that apply to the group. As an example, consider the set of
agents A = {a1, a2}, and the rules {a1, a2} → 5 and {a2} → 2. As a consequence,
v ({a1}) = 0, v ({a2}) = 2 and v ({a1, a2}) = 5 + 2 = 7.

Moreover, Conitzer and Sandholm [25] proposed a concise representation based
on synergy coalition groups, which, unfortunately, does not reduce the complexity
of the associated CSG problem [84]. Ueda et al. [112] showed that, by focusing
on agent types (i.e., groups of agents whose contributions to the system are the
same) rather than on agents themselves, it is possible to lower the computational
complexity of several CF related problems. Finally, Bachrach and Rosenschein [5]
studied coalitional games based on the notion of agent skills, later adopted by
Tran-Thanh et al. [111] to propose a mixed-integer linear programming solution
based on a vector representation that scales to a hundred agents.

While all the above-described works make significant contributions to the state
of the art, the models they propose may not be able to capture the nature of re-
alistic characteristic functions such as the collective energy purchasing one we
consider here. On the one hand, this function cannot be concisely expressed as a
MC network, as its MC network would require an exponential amount of memory
with respect to the number of agents. On the other hand, the concepts of agent
types/skills imply that it is possible to fully characterise the contribution of each
agent on the basis of a small set of features, in order to achieve the conciseness of
the representation. Now, some works [80, 118] have investigated the use of clus-
tering techniques in the context of energy consumption analysis, suggesting the
application of such methods to reduce the set of agents to a limited number of
types (each characterised by a common energy consumption behaviour). However,
results show that the consistency and the preciseness of user aggregation can vary
significantly depending on various characteristics [118], leading to approximations
of very poor quality. For these reasons, we do not compare against these works,
since we are interested in developing techniques that can handle complex charac-
teristic functions such as the collective energy purchasing function.
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3.2.5 Heuristic approaches

Few heuristic approaches to CSG have been developed over the last few years.
For example, Sen and Dutta [101] propose a solution based on genetic algorithms,
Dos Santos and Bazzan [41] propose an approach based on swarm intelligence, and
Farinelli et al. [44] propose an approach based on hierarchical clustering. Meta-
heuristic approaches to CSG have also been investigated, for example Keinanen
[63] proposes a CSG algorithm based on Simulated Annealing, while Di Mauro
et al. [39] use a stochastic local search approach (GRASP) to iteratively build a
coalition structure of high quality. Even if these approaches are not able to provide
any guarantees on the solution quality, they can compute solutions for large-scale
instances. Hence, in Section 5.4.5 we compare CFSS against C-Link, since it is the
most recent heuristic approach for CSG and it has been tested using the collective
energy purchasing function, which we also consider in this thesis.

3.3 Computing payments in the ε-kernel

The current state of the art approach to compute an ε-kernel payoff allocation for
classic CF has been proposed by Shehory and Kraus [103] (Algorithm 6). Such
an algorithm does not specify how x should be initialised, and assumes that a
payoff vector is provided as an input. The first (and most expensive) phase is the
computation of the surplus matrix s (lines 3–7), which iterates over the entire set
of coalitions to assess the maximum excess (Equation 2.3) for each pair of agents
in each coalition. Once the surplus matrix has been computed, a transfer between
the pair of agents with the highest surplus difference (i.e., sij−sji) is set up, while
ensuring that each payment is individually rational. These scheme is iteratively
executed until the ratio between the maximum surplus difference δ and the value of
the considered coalition structure is within a predefined parameter ε. This ensures
that the computed payoff allocation is ε-kernel stable.

On the one hand, the computation of Equation 2.3 is a key bottleneck for
classic CF, since it involves enumerating an exponential number of coalitions, i.e.,
Θ (2n). On the other hand, when the size of the coalitions is limited to k members
as in Social Ridesharing (see Chapter 6), such an algorithm has polynomial time
complexity [103], since the coalitions are O

(
nk
)

[65].
Despite having polynomial time complexity under certain assumptions, such an

approach has some drawbacks that hinder its applicability in real-world scenarios,
and especially in the Social Ridesharing scenario we consider in Chapter 6. First,
it is designed for classic CF, failing to exploit the graph-constrained nature of this
problem. Second, this algorithm assumes that coalitional values can be assessed
at no computational cost (e.g., stored in memory or provided by an oracle). This
hypothesis, although appropriate in several settings, does not apply to SR, in
which the value of a coalition is the solution of a routing problem and it cannot
be stored in memory without limiting the scalability. These shortcomings lead to
inefficiencies that prevent the application of the method proposed by Shehory and
Kraus in our case, as discussed in detail in Section 7.1.
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Algorithm 6 ShehoryKrausKernel(x,CS, ε)

1: repeat
2: for all S ∈ CS do {For each coalition S in coalition structure CS}
3: for all ai ∈ S do {For each pair of agents ai and aj in S}
4: for all aj ∈ S − {ai} do
5: {sij is the maximum excess among all}
6: {coalitions that include ai but exclude aj}
7: sij ← max{S′∈2A | ai∈S′,aj 6∈S′} e (S′, x)

8: {ai∗ and aj∗ have the maximum surplus difference δ}
9: δ ← max(ai,aj)∈A2 (sij − sji)

10: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)
11: if x[j∗]− v ({aj∗}) < δ/2 then {Payments are individually rational}
12: d← x[j∗]− v ({aj∗})
13: else
14: d← δ/2

15: x[j∗]← x[j∗]− d {Transfer payment from aj∗ ...}
16: x[i∗]← x[i∗] + d {... to ai∗}
17: until δ/V (CS) ≤ ε

3.4 Constraint optimisation problems

Several solution techniques for COPs have been proposed in the constraint op-
timisation literature. On the one hand, Dynamic Programming (DP) approaches
are primarily based on BE [33] (see Section 2.3), the solution framework adopted
by our GPU implementation of BE, i.e., CUBE (see Chapter 8). This choice is
motivated by the successful application of GPUs in the parallelisation of DP
approaches [22, 46, 56, 109]. To the best of our knowledge, the only work that
specifically focuses on BE is the one by Fioretto et al. [46], in which the authors
devise an algorithm to realise the composition and marginalisation operations of
BE (referred as aggregate and project) on GPUs, by exploiting the high degree
of parallelism inherent in these operations. Hence, this work has been considered
as a benchmark in our experimental evaluation in Section 8.4.2. In contrast with
CUBE, our GPU implementation of BE (see Chapter 8, Fioretto et al. [46] realise
the indexing of the tables is executed by using a Minimal Perfect Hash function [7],
i.e., a hash function that maps n keys to n consecutive integers, which can be eas-
ily adopted as the indices of such keys. Although minimal perfect hash functions
can be used in parallel by different threads to index the input, their construction
is inherently sequential, since the index of a key depends on the indices assigned
to the previously considered keys [2].

In the context of BE, Dechter [34] also proposed Mini-Bucket Elimination
(MBE), an approximate version of such an algorithm that operates on smaller
portions of the buckets (consequently referred as mini -buckets) rather than on the
entire ones. By enforcing a limit on the maximum size of the mini-buckets, MBE is
characterised by memory requirements which are exponential with respect to such
limit. Nonetheless, such requirements are still significant and limit the application
of MBE in realistic applications.
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On the other hand, a recent strand of literature [78, 79] has investigated the
use of AND/OR search trees, proposing several heuristic approaches and bounding
methods to reduce the search space. Parallelisation has been investigated to speed-
up search-based approaches for COP on multi-core CPUs [85], but the application
of these techniques to GPUs is difficult for several reasons. On the one hand,
general depth-first search is known to be difficult to parallelise [94], especially on
highly parallel architectures such as GPUs. Moreover, the use of branch-and-bound
may result in heavily unbalanced search trees, requiring complex techniques to
balance the workload among the threads [85]. Such techniques are not effective on
GPUs, where load balancing is crucial to achieve a high computational throughput.
For the above reasons, we will investigate the parallelisation of such techniques on
GPUs as future work.

Within the discussion of our COP model for GCCF (see Chapter 9), it is
important to note that the time and space complexities of all the above algorithms
are exponential with respect to the induced width w∗ of the constraint network [33,
78]. For this reason, the formalisation of a particular problem (i.e., GCCF in our
case) must result in a COP that yields an induced width of manageable complexity.

3.5 Belief propagation

BP on JTs represents a well-known inference algorithm, which has received signif-
icant attention in the parallel computing literature due to its high computational
demand. In particular, Xia and Prasanna [119] proposed a distributed approach
that combat this by decomposing the initial JT into a set of subtrees, and then
performing the evidence propagation for each subtree in parallel on a cluster. In
this thesis, we also focus on exploiting parallel architectures for BP on JTs, but,
in contrast, we aim at parallelising the single propagation operation, which is the
most computationally intensive task of the entire algorithm. Moreover, we focus
on GPU parallelisation, rather than multi-core.

To the best of our knowledge, the work most related to BE on GPUs is pre-
sented by Zheng and Mengshoel [122], in which the authors propose a parallel
approach for BP, and, in particular, they discuss a way to parallelise the atomic
operations of propagation, so that it could be embedded in different algorithms.
The authors devise a two-dimensional parallelism, in which an higher level element-
wise parallelism is stacked on top of a lower level arithmetic parallelism, to better
exploit the massive computational power provided by modern GPUs. In particu-
lar, element-wise parallelism is achieved by computing each of the |Rij | reduction-
and-scattering operations (see Section 2.4) in parallel, which require |Rij | mapping
tables (one per row of Sepij) to allow each thread to locate its input data from the
corresponding potential tables. On the other hand, arithmetic parallelism repre-
sents the multi-threaded computation of each reduction-and-scattering operation,
by means of well known parallel algorithms that can be found in literature [54].

Although this approach represents a significant contribution to the state of
the art, there are some drawbacks that hinder its applicability. In particular, the
proposed memory layout is not optimised for GPUs, for two main reasons:
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• Threads need to access data in sparse and discontinuous memory locations us-
ing an additional indexing table, breaking coalescence and drastically reducing
the throughput of memory transfers (see Section 2.5). Coalescence is crucial
and it should be exploited in order to reduce memory accesses to the global
memory, achieving a greater computational throughput.

• Since input data is organised in a discontinuous pattern rather than in continu-
ous chunks, it is mandatory to transfer the entire potential tables to the global
memory of the GPU before starting the computation of the BP algorithm,
hindering two desirable properties: i) this approach is not applicable to poten-
tial tables that do not fit into global memory, since the sparsity of the data
prevents any possibility of splitting them into smaller parts, and ii) since the
computation cannot be started before the entire input has been copied to the
GPU, such transfers cannot be amortised with pipelining (see Section 2.5.2).

Moreover, the authors devise this technique for BP, where tables are complete (i.e.,
they include a row for every possible assignment of the variables in their scope).
Thus, this approach cannot be applied to problems in which tables are incomplete
(see Definition 2.10), such as our COP model for GCCF discussed in Chapter 9.
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CFSS: a branch-and-bound algorithm for GCCF

We now present a general algorithm to solve GCCF by showing that all feasible
coalition structures induced by G can be modelled as the nodes of a search tree in
which each feasible coalition structure is represented only once. This allows us to
avoid any redundancy. Specifically, we first detail how we use edge contractions to
represent the GCCF problem and then we provide a depth-first approach to build
and traverse the search tree so to find the optimal solution.

4.1 Generating feasible coalition structures via edge
contractions

In this section we show that each CS ∈ CS (G) can be represented by a corre-
sponding graph G = (A, E), where A ⊆ 2A \ {∅} and E ⊆ A × A, i.e., each node
u ∈ A represents a particular coalition. Notice that in the initial graph G = (A,E)
each vertex u ∈ A represents a single agent, and hence, G can be seen as the rep-
resentation of the feasible coalition structure formed by all the singletons.

In what follows, we will show that, for each CS ∈ CS (G), the corresponding G
can be obtained as the contraction of a set of edges of G, and that each contraction
of a set of edges of G represents a feasible coalition structure CS ∈ CS (G). In
more detail, let us define an edge contraction as follows.

Definition 4.1 (edge contraction). Given a graph G = (A, E) and an edge
e = (u, v) ∈ E, the result of the contraction of e is a graph G′ obtained by removing
e and the corresponding vertices u and v, and adding a new vertex w = u ∪ v.
Moreover, each edge incident to either u or v in G will become incident to w in
G′, merging the parallel edges (i.e., the edges that are incident to the same two
vertices) that may result.

Intuitively, one edge contraction represents the merging of the coalitions associated
to the incident vertices. Figure 4.1 shows the contraction of the edge ({a1} , {a3}),
which results in a new vertex {a1, a3} connected to vertex {a2}. Notice that edge
contraction is a commutative operation (i.e., first contracting e and then e′ results
in the same graph as first contracting e′ and then e). Hence, we define the con-
traction of a set of edges as the result of contracting each of the edges of the set
in any given order.
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{a1}

{a2}

{a3}

(a) Before contraction.

{a1, a3} {a2}

(b) After contraction.

Fig. 4.1: Example of an edge contraction.

Remark 4.2. Given a graph G, the graph G′ resulting from the contraction of any
set of edges of G represents a feasible coalition structure, where coalitions corre-
spond to the vertices of G′.

Remark 4.3. Given a graph G, any feasible coalition structure CS can be generated
by contracting a set of edges of G.

Thus, a possible way of listing all feasible coalition structures is to list the contrac-
tion of every subset of edges of the initial graph. However, notice that the number
of subsets of edges is larger than the number of feasible coalition structures over
the graph. For example, in the triangle graph in Figure 4.1a, the number of sub-
sets of edges is 2|E| = 23 = 8, but the number of feasible coalition structures is
5 (i.e., {a1} {a2} {a3}, {a1, a2} {a3}, {a1, a3} {a2}, {a1} {a2, a3} and {a1, a2, a3}).
This redundancy is due to the fact that the contraction of any two or three edges
leads to the same coalition structure, i.e., the grand coalition A = {a1, a2, a3}.

Hence, we need a way to avoid listing feasible coalition structures more than
once. To avoid such redundancies, we mark each edge of the graph to keep track of
the edges that have been contracted so far. Notice that there are only two different
alternative actions for each edge: either we contract it, or we do not. If we decide
to contract an edge, it will be removed from the graph in all the subtree rooted in
the current node, but if we decide not to contract it, we have to mark such edge
to make sure that we do not contract it in the future steps of the algorithm. To
represent such marking, we will use the notion of 2-coloured graph.

Definition 4.4 (2-coloured graph). A 2-coloured graph Gc = (A, E , colour) is
composed of a set of vertices A ⊆ 2A \ {∅} and a set of edges E ⊆ A ×A, as well
as a function colour : E → {red, green} that assigns a colour (red or green) to
each edge of the graph.

In our case, a red edge means that a previous decision not to contract that edge was
made. On the one hand, green edges can be still contracted. Figure 4.2a shows an
example of a 2-colour graph in which edge ({a1} , {a4}) is coloured in red (dotted
line). Hence, in any subsequent step of the algorithm it is impossible to contract
it. On the other hand, all other edges in such graph can still be contracted. In a 2-
coloured graph, we define a green edge contraction (e.g., dashed line in Figure 4.2a)
as follows.
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{a1}

{a2}

{a3}

{a4}

{a5}

(a) Before contraction

{a2}{a1, a3}{a4}

{a5}

(b) After contraction

Fig. 4.2: Example of a 2-coloured edge contraction (best viewed in colour).

Definition 4.5 (green edge contraction). Given a 2-coloured graph Gc =
(A, E , colour) and a green edge e ∈ E, the result of the contraction of e is a new
graph G′c obtained by performing the contraction of e on Gc. Whenever two parallel
edges are merged into a single one, the resulting edge is coloured in red if at least
one of them is red-coloured, and it is green-coloured otherwise.

The rationale behind marking parallel edges in this way is that, whenever we
mark an edge e = (u, v) to be red, we want the agents in u and v to be in separate
coalitions, hence whenever we merge some edges with e we must mark the new edge
as red to be sure that future edge contractions will not generate a coalition that
contains both the agents corresponding to nodes u and v. For example, note that
in Figure 4.2 the red edge ({a1} , {a4}) (dotted in the figure) and the green edge
({a4} , {a3}) are merged as a consequence of the contraction of edge ({a1} , {a3}),
resulting in an edge ({a4} , {a1, a3}) marked in red, so to enforce that any possible
contraction in the new graph will keep agents a1 and a4 in separate coalitions.

Having defined how we can use the edge contraction operation to generate
feasible coalition structures, we now provide a way to generate the whole search
space of feasible coalition structures.

4.2 Generating the entire search space

Given the green edge contraction operation defined above, we can generate each
feasible coalition structure exactly once. In more detail, at each point of the gen-
eration process, each red edge indicates that it has been discarded for contraction
from that point onwards, and hence its vertices cannot be joined. Observe that the
way we defined green edge contraction guarantees that the information encoded in
red edges is always preserved. Thus, given a 2-coloured graph, its children can be
readily assessed as follows: for each edge in the graph, we generate the graph that
results from contracting that edge. Moreover, we colour the selected edge in red so
that it cannot be contracted again in subsequent edge contractions. Algorithm 7
implements the depth-first1 generation and traversal of our search tree, in which
each feasible coalition structure is evaluated by means of the characteristic func-
tion and compared with the best (i.e., the one with the highest value) coalition
structure so far. Once the search tree has been entirely traversed, Algorithm 7
outputs the optimal solution.

1 DFS allows us to traverse the entire tree with polynomial memory requirements.
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Algorithm 7 SolveGCCF(G)

1: Gc ← G with all green edges
2: best← Gc {Initialise current best solution with singletons}
3: Front← ∅ {Initialise search frontier Front with an empty stack}
4: Front.push (Gc) {Push Gc as the first node to visit}
5: while Front 6= ∅ do {Search loop}
6: node← Front.pop () {Get current node}
7: if V (node) > V (best) then {Check function value}
8: best← node {Update current best solution}
9: Front.push(Children (node)) {Update Font}

10: return best {Return optimal solution}

Algorithm 8 Children(Gc)
1: G′c ← Gc = (A, E , colour) {Initialise graph G′c with Gc}
2: Ch← ∅ {Initialise the set of children}
3: for all e ∈ E : colour (e) = green do {For all green edges}
4: Ch← Ch ∪ {GreenEdgeContr (G′c, e)}
5: Mark edge e with colour red in G′c
6: return Ch {Return the set of children}

{a1}
{a2}

{a3}
{a4}

{a1, a2}
{a3}

{a4}

{a1, a2, a3}

{a4}

{a1, a2, a3, a4}

3

2

{a1, a2}

{a3, a4}

4

{a1, a2, a4}

{a3}

5

1

{a2}
{a3}

{a1, a4}

11

{a1}
{a2, a3}

{a4}

{a1, a4}

{a2, a3}

7

{a1}

{a2, a3, a4}

8

6

{a1}
{a2}

{a3, a4}

{a2}

{a1, a3, a4}

10

9

Fig. 4.3: Search tree for a square graph (best viewed in colour).

As an example, Figure 4.3 shows the search tree generated starting from a square
graph, highlighting each generation step with labels on the edges. It is possible to
show that Algorithm 7 visits all feasible coalition structures and each of them is
visited only once. In particular, we can prove the following proposition.

Proposition 4.6. Given a 2-coloured graph Gc, the tree generated by Algorithm 7
rooted at Gc contains all the coalition structures compatible with Gc, i.e., all the
coalition structures that do not violate any constraint induced by the red edges in
Gc. Moreover, each of them appears only once.



4.2 Generating the entire search space 53

Proof. By induction on the number of green edges. If there is no green edge, then
the tree has just one element which corresponds to the only coalition structure
compatible with Gc. Assume that the statement is true for n− 1 green edges. Let
Gc have n green edges and CS be a coalition structure compatible with Gc. If no
edge in Gc is contractible with respect to CS, then CS is the coalition represented
by Gc, and it cannot be in any of its children, because each of them contracts an
edge in Gc. Thus CS appears in the tree rooted at Gc only once (at the root).
Assume then that there is at least one green edge in Gc contractible with respect
to CS. Then CS cannot be the coalition structure at the root. We now identify a
child G′c such that CS is compatible with G′c. The first child of the root contracts
an edge e. If e is contractible with respect to CS, then the first child of Gc is
compatible with CS. Otherwise e is red-colourable with respect to CS. The same
procedure goes on with the remaining children. Thus, by construction, the root has
three kind of children with respect to CS: some which contract a red-colourable
edge, a single child G′c that contracts a contractible edge and red-colours some
red-colourable edges, and from there on some that red-colours a contractible edge.
It is easy to see that CS is compatible only with one child, namely G′c. Now G′c
has at most n− 1 green edges and by induction CS must appear in that subtree
only once. Thus, it appears in the tree rooted at Gc only once. ut

As a consequence, we prove the time complexity of Algorithm 7.

Proposition 4.7. The time complexity of Algorithm 7 is O (|CS (G)| · |E|).

Proof. There is a bijection between CS (G) and the nodes visited by Algorithm 7,
by direct application of Proposition 4.6 to G with all green edges. The creation of
each new node yields a GreenEdgeContraction(G, e) operation, whose com-
plexity is O (|E|) (see Definition 4.5). Hence, the complexity of creating the entire
search tree is O (|CS (G)| · |E|).2

Therefore, we can always find the optimal solution of a GCCF problem by visiting
the entire search tree and evaluating each feasible coalition structure, which is
represented only once in the tree. Hence, if we search different branches in parallel
(i.e., assigning different iterations of the loop at line 3 of Algorithm 8 to different
threads/cores), we will not have redundant computations.

Nonetheless, even for sparse graphs the number of feasible coalition structures
can be very large, making their visit not affordable. In fact, the GCCF problem
is NP-complete [116], as, in general, the number of feasible coalition structures is
exponential in the number of agents. For this reason, we propose a branch and
bound technique that helps prune significant parts of the search space when the
characteristic function belongs to a general class of function, i.e., m+ a functions.

2 Notice that, since CSG is a particular case of GCCF (i.e., CSG is a GCCF problem
with a complete graph), |CS (G)| can be, in the worst case, equivalent to the nth Bell
number, i.e., Ω( n

ln(n)
n) [10]. Nonetheless, such exponential complexity is not represen-

tative of the problems we are interested to solve, i.e., problems in which G is sparse
and, hence, CS (G) contains a lower number of feasible coalition structures.
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4.3 m+ a functions

In this section we present a general class of characteristic functions, namely m+a
functions, showing that they can be seen as the sums of a superadditive and a
subadditive part [86].3 Such functions are particularly interesting as they can be
used to model several realistic GCCF scenarios, which we describe in detail in
Chapter 5. Furthermore, m + a functions allow us to devise an algorithm (i.e.,
the CFSS algorithm) that can be employed to compute solutions for large-scale
systems, thanks to two fundamental properties. On the one hand, m+a functions
are closed-form functions, hence it is not necessary to store the values of all feasible
coalitions in memory4 since each coalition can be evaluated on-the-fly only when
needed. On the other hand, they enable an efficient bounding technique, discussed
in Section 4.4, that helps prune significant parts of the search space. Such method
allows us to compute the optimal solution for any GCCF problem based on an
m + a function by generating only a minimal portion of the solution space (i.e.,
less than 0.32% in our experiments in Section 5.4.2)

Definition 4.8 (superadditive (resp. subadditive) v (·) function). Given a
graph G, a function v : FC (G) → R is superadditive (resp. subadditive) if the
value of the union of disjoint coalitions is no less (resp. no greater) than the sum
of the coalitions’ separate values, i.e., v (S ∪ T ) ≥ (resp. ≤) v (S) + v (T ) for all
S, T ⊆ A such that S ∩ T = ∅.

We define such properties for the function V : CS (G)→ R defined in Equation 2.1.

Definition 4.9 (superadditive (resp. subadditive) V (·) function). Given a
graph G, a function V : CS (G)→ R defined according to Equation 2.1 is superad-
ditive (resp. subadditive) if the underlying function v : FC (G)→ R is superadditive
(resp. subadditive).

Definition 4.10 (m + a V (·) function). Given a graph G, a function V :
CS (G) → R is an m + a function if it is the sum of a superadditive function
V + : CS (G)→ R and a subadditive function V − : CS (G)→ R.

Note that, a similar decomposition has been previously proposed by Shekhovtsov
et al. [105, 106], focusing on general functions that can be decomposed as the
sum of supermodular and submodular components, exploiting such a property to
achieve better results in the solution of several optimisation problems. Submodular
functions have been widely studied in the optimisation literature [100] in virtue of
their natural diminishing returns5 property [82, 83].

3 Notice that if the characteristic function is superadditive (resp. subadditive), then the
solution of the GCCF problem is trivially the grand coalition (resp. the singletons).

4 The classic formulation of the CSG problem requires to store the value of each coalition
in memory, which requires an exponential amount of memory.

5 Informally, a submodular function has the property that the difference in the value of
the function that a single element makes when added to an input set decreases as the
size of the input set increases.
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Definition 4.11 (submodular (resp. supermodular) v (·) function). Given
a set A, a submodular (resp. supermodular) function [100] is a function v : 2A → R
which satisfies the property

v (S) + v (T ) ≥ (resp. ≤) v (S ∪ T ) + v (S ∩ T ) , ∀S, T ⊆ A.

It is important to note that our result (i.e., Theorem 4.17) holds for superadditive
and subadditive functions (cf. Definition 4.8), which are weaker (i.e., more general)
properties with respect to supermodularity and submodularity. In fact, it is easy
to show that supermodularity (resp. submodularity) implies superadditivity (resp.
subadditivity), but the converse is not true [100].

4.4 The CFSS algorithm

We now describe CFSS [14, 16] (Coalition Formation for Sparse Synergies), our
branch and bound approach to GCCF when applied to the family of m+a charac-
teristic functions. Specifically, we provide a technique to compute an upper bound
for the value assumed by the characteristic function in every coalition structure of
the subtree ST (CSi) rooted at a given coalition structure CSi. In order to explain
how to compute such an upper bound, we first define the element CSi.

Definition 4.12 (CSi). Given a feasible coalition structure CSi represented by a
2-coloured graph Gc, the coalition structure CSi can be obtained by removing all
red edges from Gc and then contracting all the remaining green edges (which is
equivalent to finding the connected components in the graph after the removal of
all red edges).

Furthermore, we also detail some properties of our domain.

Lemma 4.13. CS (G) is a lattice, i.e., a partially ordered set, in which every two
elements CSi and CSj have a supremum (CSi∨CSj) and an infimum (CSi∧CSj).

We define the following partial order over coalition structures.

Definition 4.14 (order among coalition structures). Given any two coalition
structures CSi and CSj, we say that CSi ≤ CSj if every element of CSi is a subset
of some element of CSj.

As an example, {a1, a2} {a3} ≤ {a1, a2, a3}, but the order between {a1, a2} {a3}
and {a1} {a2, a3} is not defined. It is well known that with this partial order the set
of partitions forms a complete lattice (see Section V.4 in [50]), called the partition
lattice or equivalence lattice. It is easy to see that our domain of interest, i.e.,
the set of feasible coalition structures induced by G, is sublattice of the partition
lattice, and thus it is a lattice. Furthermore, in our scenario, the grand coalition
represents a supremum of any two elements, while the coalition structure of all
singletons represents an infimum.

Lemma 4.15. CSi is the infimum of the subtree rooted at CSi, i.e., CSi =∧
ST (CSi) = inf ST (CSi), where ST (CSi) is the subtree rooted at CSi.
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In the search tree defined in Section 4 each child is the result of contracting an
edge in the parent. As a consequence of the contraction, two of the coalitions
in the parent are merged, making the child partition coarser than that of the
parent. Henceforth, the elements of CS (G) can be arranged in an order-preserving
tree: whenever CSj is a descendant of CSi in the tree, then CSj ≥ CSi. As a
consequence, the above statement holds.

Lemma 4.16. Given a node CSi, CSi is bigger than any of the elements of the
subtree, i.e., CSi ≥

∨
ST (CSi) = supST (CSi).

Since CSi represents the connected components in the graph after the removal of
all red edges, it can be interpreted as the coarsest partition ignoring the constraints
imposed by the red edges. Clearly, any partition in the subtree will be at most as
coarse as this one, since red edges will prevent the merging of the coalition they
connect. Given the above, we now prove the following theorem.

Theorem 4.17. Given an m + a function V : CS (G) → R, then M (CSi) =
V − (CSi) + V +

(
CSi

)
is an upper bound for the value assumed by such function

in every coalition structure of the subtree ST (CSi) rooted at CSi, i.e.,

M (CSi) = V − (CSi) + V +
(
CSi

)
≥ max{V (CSj) | CSj ∈ ST (CSi)}. (4.1)

Proof. Consider that, for the subtree rooted at CSi, the maximum of a subadditive
function will be achieved at CSi (Lemma 4.15), i.e., V − (CSi) ≥ max{V − (CSj) |
CSj ∈ ST (CSi)}. On the other hand, the maximum of a superadditive function
will be reached at one of the leaves. However, since assessing the supremum CSi of
the subtree is computationally efficient (Lemma 4.16), we can bound V + (·) in the
subtree as V +

(
CSi

)
≥ max {V + (CSj) | CSj ∈ ST (CSi)} . Since V (·) is an m+a

function, then we can provide an upper bound for such a function by composing
these two results, i.e., M (CSi) = V − (CSi) + V +

(
CSi

)
. ut

Algorithm 9 CFSS(G)

1: Gc ← G with all green edges
2: best← Gc {Initialise current best solution with singletons}
3: Front← ∅ {Initialise search frontier Front with an empty stack}
4: Front.push (Gc) {Push Gc as the first node to visit}
5: while Front 6= ∅ do {Branch and bound loop}
6: node← Front.pop () {Get current node}
7: if M (node) > V (best) then {Check bound value}
8: if V (node) > V (best) then {Check function value}
9: best← node {Update current best solution}

10: Front.push (Children (node)) {Update Front}
11: return best {Return optimal solution}
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Building upon Theorem 4.17, we can efficiently assess an upper bound for the
value of the characteristic function in any subtree and prune it, if such a value is
smaller than the value of the best solution found so far. CFSS is implemented by
Algorithm 9. Such an algorithm does not specify the order in which the children
of the current node should be visited, namely the operation of the Children
function. However, this order has a strong influence on the performance of CFSS (as
shown in Section 5.4.3), since it can be used to compute a tighter upper bound on
the characteristic function, to improve the effectiveness of the branch and bound.

4.4.1 Edge ordering heuristic

In this section we propose a heuristic to define a total ordering among the edges
of a graph G, in order to guide the traversal of the search tree. This results in a
significant speed-up of the algorithm, by means of an improvement of the upper
bound. In particular, we notice that the value of M (CSi) = V − (CSi)+V +

(
CSi

)
is heavily influenced by the value of V +

(
CSi

)
. In fact, it is possible that CSi =

{A} (i.e., the grand coalition), when CSi contains enough green edges to connect all
the nodes of the graph G. This results in a poor bound, since V + is a superadditive
function and it reaches its maximum value for A. On the other hand, if red edges
form a cut-set for the 2-coloured graph, the procedure in Definition 4.12 results in
a coalition structure CSi = {S1, S2}, as Figure 4.4 shows.

a2 a1

a4 a3

a6

a5

a8

a7a9

S1 S2

CSi

Fig. 4.4: Example of a partition with a cut-set of 3 edges (best viewed in colour).

In this case, our bounding technique produces a lower upper bound M (CSi) =
V − (CSi)+v+ (S1)+v+ (S2), since v+ (·) is superadditive and, therefore, v+ (S1)+
v+ (S2) ≤ v+ (A) . Notice that, having an upper bound that provides a lower
overestimation of the characteristic function is crucial for the performance of CFSS,
as the condition at line 7 in Algorithm 9 would be verified less often, hence allowing
us to prune bigger portions of the search space. Also, it easy to see that when the
value of the characteristic function increases in a non-linear way with respect to
the size of the coalitions (such as the functions we consider in this thesis), the
more S1 and S2 are closer to a bisection of A (i.e., the more |S1| and |S2| are close
to |A|/2), the more pronounced such improvement is. Following this observation, it



58 4 CFSS: a branch-and-bound algorithm for GCCF

Algorithm 10 Order(G)

1: i← 1 {Initialise edge counter}
2: Go ← G {Initialise the ordered graph}
3: Q← ∅ {Initialise an empty queue}
4: Q.push (G) {Push G as the first graph to partition}
5: while Q 6= ∅ do {Partitioning loop}
6: 〈G1, G2, E

′〉 ← Cut (Q.pop ()) {Partition current graph}
7: Label in Go each edge ∈ E′ from i to i+ |E′| − 1
8: i← i+ |E′| {Increase edge counter}
9: if |A1| > 1 then {If the first subgraph has at least 2 nodes...}

10: Q.push (G1) {... enqueue it}
11: if |A2| > 1 then {If the second subgraph has at least 2 nodes...}
12: Q.push (G2) {... enqueue it}
13: return Go {Return ordered graph}

is preferable to visit the edges that produce a cut of the graph in the first steps
of the algorithm, since they will result in the above-explained improvement once
such edges are marked in red. Henceforth, we define a total ordering among the
edges of G, producing an ordered graph Go by means of Algorithm 10. Intuitively,
such algorithm computes small6 cut-sets by means of the routine Cut(G), which
outputs the subgraphs G1 = (A1, E1) and G2 = (A2, E2) resulting from the cut,
and the cut-set E′. Once we find the cut-set, we label its edges as the first ones
in the ordered graph, recursively applying such procedure for all the subsequent
subgraphs, until every edge has been ordered.

In addition to this edge ordering heuristic, our bounding technique can be
employed to provide anytime approximate solutions, as shown in the next section.

4.4.2 Anytime approximate properties

Theorem 4.17 can be directly applied to compute an overall bound of an m + a
function, with anytime properties. More precisely, let us consider frontier Front
in Algorithm 9 (line 3). When we expand such a frontier (line 10) we keep track
of the highest value of V (·) in the visited nodes. Hence, given a frontier Front,
the bound B (Front) is defined as

B (Front) = max{V (best) , max
CS∈Front

M (CS)} (4.2)

6 Ideally, we would prefer to compute the smallest cut-set, in order to traverse the mini-
mum number of edges necessary to partition the graph. Unfortunately, such a problem
(known as the Minimum Bisection problem) is a well known NP-complete problem [48].
However, our heuristic does not need an optimal solution, since if a suboptimal cut-set
(i.e., bigger than the optimal one) is used, our algorithm will still partition the graph
in a higher number of steps, resulting in a slightly smaller improvement. We adopt an
approximate algorithm implemented with the METIS graph partitioning library [60],
a standard tool that allows to compute good-quality cut-sets.
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Thus, B (Front) is the maximum between the values assumed by V (·) inside
the frontier (i.e., V (best)) and an estimated upper bound outside of it (i.e.,
maxCS∈Front M (CS)). Notice that since each M (CS) is an overestimation of
the value of V (·) in the corresponding subtree, such a maximisation provides a
valid upper bound for V (·) in the portion of search space not visited yet. Further-
more, the quality of B (Front) can only be improved by expanding Front. More
formally, if Front′ is such an expansion, then

B (Front) ≥ B (Front′) ≥ max{V (CS) | CS ∈ CS (G)}. (4.3)

This can be easily verified using the definition of M (·). In fact, each bound re-
sulting from the children of a substituted node u ∈ Front must be less or equal
to M (u) and, hence, Inequality 4.3 holds. Intuitively, the larger the search space
explored, the better is the bound provided. Finally, notice that the fastest way to
compute a bound for V (·) is to consider a frontier formed exclusively by the root
(i.e., the coalition structure formed by all singletons). Assessing this bound has
the same time complexity of computing M , i.e., O (|E|), and, in some scenarios,
its quality can be satisfactory, as shown in Section 5.4.4.





5

Applications for GCCF

In this chapter we present our experimental evaluation, in which we benchmark the
CFSS algorithm on several application scenarios that can be modelled as GCCF
problems. We present three scenarios: the collective energy purchasing scenario
(Section 5.1), edge sum with coordination cost scenario (Section 5.2), and the
coalition size with distance cost scenario (Section 5.3). Specifically, we are inter-
ested in the characterisation of such scenarios as m + a functions, so to employ
the CFSS algorithm discussed in Chapter 4.4.

Then, in Section 5.4 we discuss our experimental evaluation, showing that
CFSS outperforms DyCE (i.e., the state of the art algorithm to solve GCCF prob-
lems) and that it can compute good-quality approximate solutions for systems
with thousands of agents.

5.1 Collective energy purchasing

In the collective energy purchasing scenario, agents form coalitions to buy energy
together at cheaper prices [114]. Specifically, each agent is characterised by an
energy consumption profile that represents its energy consumption throughout a
day. A profile records the energy consumption of a household at fixed intervals
(every half hour in our case). Hence each profile is a vector representing the actual
measurements collected over a month from 2732 households in the UK. The char-
acteristic function of a coalition of agents is the total cost that the group would
incur if they bought energy as a collective in two different markets: the spot mar-
ket, a short term market (e.g., half hourly, hourly) intended for small amounts of
energy; and the forward market, a long term one in which larger amounts of en-
ergy (spanning weeks and months) can be bought at cheaper prices [114]. Farinelli
et al. [44] proposed to model the collective energy purchasing scenario with the
characteristic function

v (S) =

T∑
t=1

qtS (S) · pS + T · qF (S) · pF︸ ︷︷ ︸
energy(S)

+κ (S) ,
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where T = 48 is the number of energy measurements in each profile, pS ∈ R−
and pF ∈ R− represent the unit prices of energy in the spot and forward market
respectively, qF : FC (G) → R− stands for the time unit amount of electricity to
buy in the forward market and qtS : FC (G) → R− for the amount to buy in the
spot market at time slot t.1 energy : FC (G)→ R− is the total energy cost.

Finally, κ : FC (G)→ R− stands for a coalition management cost that depends
on the size of the coalition and captures the intuition that larger coalitions are
harder to manage. The definition of this cost depends on several low level issues
(e.g., the capacity of the power networks connecting the customers in the groups,
legal fees, and other costs associated to group contracts, etc.), hence a precise
definition of this term goes beyond the scope of this thesis. Following Farinelli
et al. [44] we use κ (S) = −|S|γ with γ > 1 to introduce a non-linear element
that penalises the formation of larger coalitions, so that the grand coalition is
not always the best coalition structure. Hence, the collective energy purchasing
function is defined as

V (CS) =
∑
S∈CS

[
T∑
t=1

qtS (S) · pS + T · qF (S) · pF

]
︸ ︷︷ ︸

V +(CS)

+
∑
S∈CS

κ (S)︸ ︷︷ ︸
V −(CS)

. (5.1)

Proposition 5.1. The collective energy purchasing function is m+ a.

Proof. As shown in Equation 5.1, such function can be seen as an m+ a function,
being the sum of a superadditive function, consisting of the cost of the energy
necessary to fulfil the aggregated consumption profiles of the coalitions, and a
subadditive one (i.e., the sum of the coalition management costs). On the one
hand, since the baseline (i.e., the minimum) of the aggregate energy profile of a
coalition S12 = S1∪S2 is no less than the sum of the baselines of the energy profiles
of S1 and S2, the members of S12 can buy from the forward market an amount of
energy which is no less than the sum of the amounts that could have been bought
by S1 and S2 separately.2 Therefore, the energy (·) function is superadditive. On
the other hand, it is trivial to verify that κ (·) is a subadditive function. ut

5.2 Edge sum with coordination cost

Our second test case is represented by the edge sum with coordination cost func-
tion, in which every edge of G is associated with a real value by means of a function
w : E → R [38]. This value defines a pairwise relation between two nodes, that
represents how well (or bad) those agents perform together, or the cost of com-
pleting a coordination task in a robotic environment [29]. Each coalitional value
is the sum of the weights of the edges among its members. We also introduce a

1 Unit prices (whose values are reported in Section 5.4) are negative numbers, i.e., they
belong to the set R− = {i ∈ R | i ≤ 0}, to reflect the direction of payments. Thus, the
values of the characteristic function are negative as well, hence they represent costs
that, maintaining the maximisation task, we aim to minimise.

2 A more detailed discussion is provided by Vinyals et al. [114].
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penalising factor κ (S),3 with the same definition given in the previous section.
Such penalising factor takes into account management and communication costs
in larger coalitions [104]. Hence, we define this characteristic function as

v (S) =
∑

e∈edges(S)

w (e) + κ (S) , (5.2)

where the function edges : FC (G)→ 2E provides the set of all the edges connect-
ing any two members of a given coalition S, i.e.,

edges (S) = {(v1, v2) ∈ E | v1 ∈ S and v2 ∈ S}.

In order to characterise this scenario with an m+ a function, we rewrite Equation
5.2 as

v (S) =
∑

e∈edges(S)

[
w+ (e) + w− (e)

]
+ κ (S) ,

where w+ (e) =

{
w (e) , if w (e) ≥ 0,
0, otherwise,

and w− (e) =

{
w (e) , if w (e) < 0,
0, otherwise.

In other words,
∑
e∈edges(S) w

+ (e) represents the sum of all the positive weights of

the edges in edges (S), while
∑
e∈edges(S) w

− (e) represents the sum of the negative
ones. The edge sum with coordination cost function is then defined as

V (CS) =
∑
S∈CS

 ∑
e∈edges(S)

w+ (e)


︸ ︷︷ ︸

V +(CS)

+
∑
S∈CS

 ∑
e∈edges(S)

w− (e) + κ (S)


︸ ︷︷ ︸

V −(CS)

. (5.3)

Proposition 5.2. The edge sum with coordination cost function is m+ a.

Proof. Equation 5.3 highlights the V + (·) and V − (·) components of this function.
On the one hand, v+ (S) =

∑
e∈edges(S) w

+ (e) is clearly superadditive, since a
coalition S12 = S1 ∪ S2 contains an amounts of positive edges which is no less
than the total amount of positive edges in S1 and S2 taken separately, hence
v+ (S12) ≥ v+ (S1) + v+ (S2). Similarly, it is easy to show that

∑
e∈edges(S) w

− (e)
is a subadditive function. ut

The edge sum with coordination cost function allows a more precise upper bound
with respect to the one provided by Theorem 4.17, as shown in Lemma 5.3.

Lemma 5.3. Given a 2-coloured graph Gc = (A, E) corresponding to the coalition
structure CSi,

∑
{e∈E | colour(e)=green} w

+ (e) is an upper bound for the values of
the edge sum with coordination cost function in the subtree rooted at CSi.

Proof. Given a node CSj in the subtree rooted at CSi, the set of edges considered
by V + (CSj) (i.e.,

⋃
S∈CSj edges (S)) is a proper subset of {e ∈ E | colour (e) =

green}, since we only contract green edges in the creation of such subtree. Since
V + (CSj) ≥ V (CSj), the value of V (CSj) is lower than the given expression. ut

3 Such penalising factor makes the edge sum with coordination cost function to violate
the IDM property (cf. Section 3.2.3), therefore the approach proposed by Voice et al.
[116] cannot be used.
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Fig. 5.1: 2-coloured graph with weighted edges (best viewed in colour).

We now provide an example in order to explain why such upper bound is more effec-
tive than the one provided by Theorem 4.17. Consider the coalition structure CSi
represented by the 2-coloured graph in Figure 5.1. In this case, CSi = {a1, a2, a3},
since Definition 4.12 ignores red edges. As a consequence, the upper bound pro-
vided by Theorem 4.17 is V +

(
CSi

)
= 2. Notice that such value also considers the

red edge, even if such edge cannot be contracted, and hence, can never be part
of any coalition. In contrast, Lemma 5.3 does not consider such edge and thus, it
results in an upper bound equal to 1. In conclusion, a lower upper bound results
in a more effective pruning, as confirmed by our experiments in Section 5.4.2.

5.3 Coalition size with distance cost

In our final scenario, we consider the formation of coalitions where bigger groups
are favoured and which minimises the distance of the opinion among their mem-
bers. Such application could be employed to cluster public opinion, or to detect
the presence of “virtual coalitions” among members of a parliament based on their
recorded votes (e.g., the votes by the Democratic and the Republican parties) in
terms of similarity. Such a model can be modelled evaluating each S with

v (S) = |S|α −
∑

(i,j)∈S×S
d (i, j) , (5.4)

where α ≥ 1, and d : A×A→ R+ is a function that measures the distance between
the opinions of agent i and agent j. From Equation 5.4 it follows that the input
of our problem has size n2, where n is the total number of agents, since we must
know the distances between each pair or agents. The coalition size with distance
cost function of a coalition structure CS is then defined as

V (CS) =
∑

S∈CS
|S|α︸ ︷︷ ︸

V +(CS)

+
∑

S∈CS

[
−
∑

(i,j)∈S×S
d (i, j)

]
︸ ︷︷ ︸

V −(CS)

.

Proposition 5.4. The coalition size with distance cost function is m+ a.

Proof. On the one hand, it is easy to verify that v+ (S) = |S|α is a superadditive
function, assuming that α ≥ 1. On the other hand, v− (S) = −

∑
(i,j)∈S×S d (i, j)

is subadditive, since

v− (S1 ∪ S2) = v− (S1) + v− (S2)−
∑

i∈S1,j∈S2

d (i, j) ≤ v− (S1) + v− (S2) . ut

In what follows, we show how we benchmark our approach my means of the above
discussed characteristic functions.



5.4 Empirical evaluation 65

5.4 Empirical evaluation

The main goals of our empirical evaluation of CFSS are:

1. To evaluate its runtime performance with respect to DyCE considering a va-
riety of graphs, both realistic (i.e., subgraphs of the Twitter network) and
synthetic (i.e., scale-free networks and community networks).

2. To evaluate the effectiveness of our bounding technique.
3. To evaluate the anytime performance and guarantees that our approach can

provide when scaling to very large numbers of agents (i.e., more than 2700).
4. To compare the quality of our approximate solutions with the ones computed

by C-Link [44] (see Section 3.2.5) on large-scale instances.
5. To evaluate the speed-up that can be obtained with a parallel version of CFSS.
6. To evaluate the speed-up produced by our edge ordering heuristic.

Following Voice et al. [117], we consider scale-free networks generated with the
Barabási-Albert model with the parameter m within {1, 2, 3} (i.e., every newly
added node is connected, on average, to m already existing nodes). We generated
community networks with the BTER model [67], with an average degree (denoted
as deg) within {2, 4, 6}. We compare our approach with DyCE in our three refer-
ence domains. In our characteristic functions we use the following parameters:

• Following Farinelli et al. [44], in the collective energy purchasing function we
fixed pS = −80 and pF = −70.

• In the edge sum with coordination cost function we assigned a uniformly dis-
tributed random weight within [−10, 10] to each edge.

• Following Farinelli et al. [44], in both the above scenarios we considered γ = 1.3.
• In the coalition size with distance cost function we assigned a uniformly dis-

tributed random value within [0, 100] to each distance between a pair of dif-
ferent agents (with d(i, i) = 0), and we considered α = 2.2, motivated by the
remarks in Section 5.4.4.

We conducted an additional set of experiments (considering the collective energy
purchasing function) in which the graph G is a subgraph of a large crawl of the
Twitter social graph. Specifically, such dataset is a graph with 41.6 million nodes
and 1.4 billion edges published as part of the work by Kwak et al. [69]. In particular,
G is obtained by means of a standard algorithm [96] to extract a subgraph from
a larger graph, i.e., a breadth-first traversal starting from a random node of the
whole graph, adding each node and the corresponding arcs to G, until the desired
number of nodes is reached.

Moreover, we implemented a multi-threaded version of CFSS, namely P-CFSS
(i.e., Parallel CFSS), and we analysed the speed-up of P-CFSS using Amdahl’s
law [3], as it provides the maximum theoretical speed-up that can be achieved.
All our results refer to the average value over 20 repetitions for each experiment.
CFSS4 and C-Link are implemented in C, while we used the DyCE implementation
provided by its authors. We run our tests on a machine with a 3.40GHz CPU and
16 GB of memory.

4 Our implementation is available at https://github.com/filippobistaffa/CFSS.

https://github.com/filippobistaffa/CFSS
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Fig. 5.2: Legend for scale-free networks.
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Fig. 5.3: Edge sum with coordination cost, scale-free networks.
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Fig. 5.4: Collective energy purchasing, scale-free networks.
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5.4.1 DyCE vs. CFSS: runtime comparison

In our experiments using scale-free networks, CFSS outperforms DyCE when coali-
tion values are shaped by the above-described benchmark functions (as shown in
Figures 5.3–5.6). In all our tests, we increased the number of agents until the
execution time reached 105 seconds.

Specifically, for the edge sum with coordination cost function (Figure 5.3), CFSS
outperforms DyCE by 4 orders of magnitude on networks with average connec-
tivity (i.e., for m = 2), and by 3 orders of magnitude on networks with higher
connectivity (i.e., for m = 3). These results are due to the fact that the bounding
technique in Lemma 5.3 allows us to prune significant portions of the search space.
This is confirmed by the experiments in Section 5.4.2.

In the collective energy purchasing scenario (Figure 5.4) with 30 agents and
m = 2, CFSS is 4.7 times faster than DyCE, and it is at least 2 orders of magnitude
faster for m = 1. However, DyCE is significantly faster (44 times) than CFSS for
m = 3. We notice a similar performance when we run both algorithms considering
the community network topology (Figure 5.5).
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Fig. 5.5: Collective energy purchasing, community networks.

The adoption of the coalition size with distance cost function (Figure 5.6) produces
a similar behaviour, with a performance improvement for our method. In fact,
CFSS is 17 times faster than DyCE for m = 2, and only 3 times slower for m = 3.
On the other hand, the runtime of DyCE equals the previous case, since this
approach is not sensitive to the values of the characteristic function.
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Fig. 5.6: Coalition size with distance cost, scale-free networks.

On Twitter subgraphs (Figure 5.7), CFSS is at least four orders of magnitude
faster than DyCE when solving instances with 30 agents (the biggest instances
that DyCE can solve), and it can scale up to 45 agents. Note that this is due
to the runtime limit we imposed (i.e., 105 seconds), and not due to technical
limitations of our approach. These results confirm the very good performance
of CFSS when considering sparse networks. In fact, the average degree of these
subgraphs is comparable with the one of a scale-free network with 1 < m < 2.
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Fig. 5.7: Collective energy purchasing, Twitter subgraphs.



5.4 Empirical evaluation 69

Notice that, in general, DyCE cannot scale over 30 agents (due to its exponential
memory requirements), while CFSS does not have such limitation, hence it is
possible to reach instances with thousands of agents (cf. Section 5.4.4).

5.4.2 Bounding technique effectiveness

To quantify the effectiveness of our bounding method, we compared the number of
configurations explored by CFSS with respect to the entire search space, i.e., the
one explored by Algorithm 7, to measure the number of search nodes pruned by our
bounding technique. These test have been run on instances with n = 30, adopting
scale-free networks with m = 2. The results show that, when the coalitional values
are provided by the collective energy purchasing function, CFSS can compute
the optimal solution exploring a number of configurations which is, on average,
0.32% of the entire search space. We measured a similar value in the coalition
size with distance cost scenario (i.e., 0.28%). Notice that, in the edge sum with
coordination cost scenario only 0.0045% of the entire search space is explored.
Thanks to the effectiveness of our bounding technique, our algorithm can compute
optimal solutions in scenarios that would otherwise be untractable.

5.4.3 Edge ordering heuristic

The following table shows the speed-up obtained by using the ordering heuristic
described in Section 4.4.1 with respect to an arbitrary ordering, considering the
collective energy purchasing and the coalition size with distance cost functions.
Even though our heuristic is applicable also in the edge sum with coordination
cost scenario, such function has not been included in this analysis since, as stated
in Lemma 5.3, it allows an ad-hoc bounding method that is more effective than
the general one (see above section). Our experiments show a clear benefit in the
adoption of such a heuristic, producing a maximum performance gain of 843% in
the first scenario and 338% in the second one. Across all experimental scenarios,
such a heuristic allows an average speed-up of 295% considering both domains.

Characteristic function Minimum Average Maximum

Collective energy purchasing 176% 367% 843%
Coalition size with distance cost 136% 222% 338%

5.4.4 Anytime approximate performance

In this section we evaluate the performance of the approximate version of CFSS on
a very large set of agents (i.e., 2732). A standard measure to evaluate approximate
algorithms is the Performance Ratio (PR) [4].

Definition 5.5 (performance ratio). Given an instance I of an optimisation
problem, its optimal solution Optim (I) and an approximate solution Approx (I),
the performance ratio PR (I) is defined as

PR (I) = max

(
Approx (I)

Optim (I)
,
Optim (I)

Approx (I)

)
.
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Both in the case of minimisation and maximisation problems, the PR is equal to
1 in the case of an optimal solution, and can assume arbitrarily large values in the
case of poor approximate solutions. In our case, computing the optimal solution
Optim (I) for large-scale GCCF problems is not possible, hence the PR is not an
applicable measure of quality. Thus, we define the Maximum Performance Ratio
(MPR) following the above definition, and considering the upper bound on the
optimal solution defined in Equation 4.2 instead of the optimal solution itself.

Definition 5.6 (maximum performance ratio). Given a GCCF instance I, we
denote the approximate solution computed by CFSS as Approx (I) and the bound
on the optimal solution defined in Equation 4.2 as Bound (I). Then, we define the
Maximum Performance Ratio MPR (I) as

MPR (I) = max

(
Approx (I)

Bound (I)
,
Bound (I)

Approx (I)

)
.

Since |Bound (I) | ≤ |V (CS∗I ) | (Equation 4.3), where CS∗I is the optimal solution
of I, MPR (I) represents an upper bound for PR (I). The MPR provides an impor-
tant quality guarantee on the approximate solution Approx (I), since Approx (I)
cannot be worse than by a factor of MPR (I) with respect to the optimal solution.

Figure 5.8 shows the value of the MPR in the collective energy purchasing
scenario, using n ∈ {100, 500, 1000, 1500, 2000, 2732} and m = 4 and Twitter sub-
graphs as network topologies, and considering a time budget of 100 seconds. Other
values for m show a similar behaviour (not reported here). We plot the average
and the standard error of the mean over 20 repetitions. It is clear that the network
topology does not impact the quality guarantees of our approach, hence we only
adopt scale-free networks in the following experiments. In contrast, the MPR is
heavily influenced by the nature of the characteristic function, as clarified later.

In addition, the results show that, for 100 agents, the provided bound is only
4.7% higher than the solution found within the time limit, reaching a maximum of
+11.65% when the entire dataset is considered, i.e., with 2732 agents. Such small
decrease is due to the fact that, for bigger instances, it is possible to explore a
smaller part of the search space in the considered time budget, leaving a bigger
portion to the estimation of the bound. Nonetheless, in this experiment CFSS
provides a MPR of at most 1.12 and thus solutions that are at least 88% of the
optimal. This confirms the effectiveness of this bounding technique applied to the
energy domain, which allows us to provide solutions and quality guarantees for
problems involving a very large number of agents. In our experiments, the bound
is assessed at the root, without any frontier expansion. In this way, the bound can
be computed almost instantly, thus devoting all the available runtime to the search
for a solution. This choice is further motivated by the fact that, in this scenario,
the bound improves of a negligible value in the first levels of the search tree, due
to the particular definition of the characteristic function. More precisely, if we
consider a frontier formed by the children of the root, in each of them the bound
of V − (·) will improve by a factor of 2γ − 2 ≈ 1.5 (i.e., the difference between the
coalition management cost of the new coalition and the ones of the two merged
singletons). On the other hand, the bound of V + (·) will remain constant: in fact,
since we are taking the maximum (i.e., the worst) bound at the frontier (as shown
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Fig. 5.8: MPR for collective energy purchasing.

in Equation 4.2), the result of this maximisation will still be equal to the V + (·)
value of the grand coalition (as it was at the root), because in at least one of the
children nodes the computation of CS will result in joining all the agents together.
For this domain it is not worth to expand the frontier from the root, since the gain
would be insignificant with respect to the additional computational cost.

The MPR exhibits a different behaviour when considering the coalition size
with distance cost function, being heavily influenced by the value of the α expo-
nent. Figure 5.9 shows how the MPR varies significantly with respect to α ∈ [2, 3],
growing up to 41825.6 for α = 2.4 and then reducing to 1.13 for α = 2.7, with
a tendency to 1 when increasing this exponent. This behaviour can be explained
by considering the structure of the characteristic function. Up to α = 2.4, the
subadditive component (i.e., −

∑
C∈CS

∑
(i,j)∈C×C d (i, j)) dominates the super-

additive one (i.e.,
∑
C∈CS |C|α), hence the search for a solution is not able to find

any coalition structure better than the initial one (i.e., the coalition structure with
all singletons, which is probably the optimal one). Nonetheless, the MPR keeps
growing when we increase α, since it equals nα

n = nα−1, i.e., the bound computed
at the root (i.e., V + (A) = nα) divided by the value of the initial solution (i.e., n).
On the other hand, when α is sufficiently large (i.e., for α = 2.5), this behaviour
is inverted, because V + (·) has a greater impact and the entire characteristic func-
tion tends to become superadditive. Thus, coalition structures closer to the grand
coalition represent good solutions, hence the MPR tends to 1 when we increase α.

These remarks motivate us to study the impact of α also on the optimal al-
gorithm. Figure 5.10 displays the runtime needed to find the optimal solution on
random instances with 25 agents on scale-free networks with m = 2, showing that
the performance of CFSS decreases when we increase α from 2 to 3. The value
of the bound provided by Equation 4.1 is larger when α grows, hence its quality
decreases, producing a less effective pruning and, thus, a higher runtime.
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Fig. 5.10: Execution time with respect to α.

To summarise, the adoption of a bigger α in the coalition size with distance cost
function negatively impacts the performance of our approach when computing op-
timal solutions, while improving approximate solutions as α grows. This motivates
our choice of defining α = 2.2 in the previous experiments, as it represents a good
value to benchmark CFSS. In fact, it is big enough to avoid excessively low run-
times in the optimal version, but it does not exceed 2.4, beyond which the quality
guarantees it provides are extremely good (i.e., the MPR tends to 1).
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5.4.5 CFSS vs. C-Link: solution quality comparison

We further evaluate the approximate performance of CFSS by comparing it against
C-Link [44], an heuristic approach to solve CSG based on hierarchical clustering.
As noted in Section 3.2.5, heuristic approaches are usually very fast in computing
an approximate solution, but they cannot provide any quality guarantee on such
solution. Hence, in this section we are interested in comparing the quality of the
solution computed by the approximate version of CFSS (which does provide quality
guarantees) with respect of the one computed by C-Link. We chose C-Link among
the other approaches discussed in Section 3.2.5 because it is the most recent one
and it has also been tested using the collective energy purchasing function by its
authors. We adopt the same experimental setting discussed in the previous section,
i.e., we consider scale-free networks with n ∈ {100, 500, 1000, 1500, 2000, 2732} and
m = 4 (generating 20 random repetitions of each experiment), and we adopt the
collective energy purchasing characteristic function. We solve each instance with
C-Link (adopting the best heuristic proposed by Farinelli et al. [44], i.e., Gain-
Link) and then we run CFSS on the same instance with a time budget equal to
C-Link’s runtime.

Figure 5.11 shows the average and the standard error of the mean of the ratio
between the value of the solution computed by C-Link and the one computed by
CFSS. Since we consider solutions with negative values, when such ratio is > 1
the solution computed by C-Link is better (i.e., it corresponds to a lower cost)
than the one computed by CFSS. Our results show that, even though C-Link can
compute better solutions, the quality of our solutions is worse only by 3% for 100
agents. When we consider the entire dataset (i.e., with 2732 agents) the quality
of our solutions is still within the 9% with respect to the counterpart. Notice that
CFSS also provides quality guarantees on such solutions, while C-Link does not
provide any guarantees.
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5.4.6 P-CFSS

Here we detail the parallelisation approach of the multi-threaded version of CFSS,
analysing the speed-up with respect to its serial version. Following Bader et al. [6],
parallelisation is achieved by having different threads searching different branches
of the search tree. The only required synchronisation point is the computation
of the current best solution that must be read and updated by every thread. In
particular, the distribution of the computational burden among the ta available
threads is done by considering the first i subtrees rooted in every node of the
first generation (starting from the left) and assigning each of them to tj threads
(1 ≤ j ≤ i). The remaining rightmost subtrees are computed by a team of ta −∑i
j=1 tj threads using a dynamic schedule, i.e., once a thread has completed the

computation of one subtree, it starts with one of the remaining ones. Parameters i
and tj are manually set, since it is assumed (and verified by an empirical analysis)
that the distribution of the nodes over the search tree does not significantly vary
among different instances. These parameters can be obtained by means of more
advanced techniques [73], which involve the estimation of the number of nodes
in the search tree. On the other hand, a preliminary investigation of such an
approach revealed that the obtained estimation is not precise enough to result in
an effective load balancing. We run P-CFSS on random instances with 27 agents
on scale-free networks with m = 2, using a machine with 2 Intel R© Xeon R© E5-2420
processors. The speed-up measured during these tests has been compared with the
maximum theoretical one provided by Amdahl’s Law, considering an estimated
non-parallelisable part of 5%, due to memory allocation and thread initialisation.

As can be seen in Figure 5.12, the actual speed-up follows the theoretical one
quite closely as long as the number of threads does not exceed 12, the number
of physical cores. After that, hyper-threading still provides some improvement,
reaching a final speed-up of 9.44 with all 24 threads active.
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Fig. 5.12: Multi-core speed-up.
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Cardinality-Constrained Coalition Formation





6

Social Ridesharing

In the previous chapters, we have tackled the CF problem by considering a type
of constraints induced by a graph connecting the agents. On the other hand, in
many realistic applications the formation of coalitions may also be influenced by
constraints of different nature. For instance, if coalitions are mapped to physical
objects with limited capacity, it is natural to enforce a constraint on the cardinal-
ity of such coalitions [104]. A straightforward real-world example is ridesharing,
in which agents represent users that need to commute across a geographical space
(usually within a city), and coalitions represent cars that are shared among multi-
ple agents with the objective of reducing travel costs. In this case, the cardinality
of coalitions is limited by the number of seats in each car, which is usually quite
low (e.g., 5 seats [120]).

Formally, we denote a CF problem that involves constraints on the cardinality
of coalitions as cardinality-constrained CF. In particular, in the following two chap-
ters we focus on a cardinality-constrained CF scenario in the context of rideshar-
ing, denoted as Social Ridesharing. In such scenario, a set of commuters, connected
through a social network, arrange one-time rides at short notice. Specifically, in
this chapter we focus on the associated optimisation problem of forming cars in
order to minimise the travel cost of the overall system, i.e., the CSG problem.
Then, in Chapter 7 we address the other fundamental aspect of CF, i.e., payment
computation, in the context of SR.

Figure 6.1 shows a system with 6 agents that have to commute across a urban
scenario. Now, it is easy to see that a2 could share a portion of the trip with a1, if
the latter decides to travel through a path that covers a2’s start and destination
points. The same discussion applies to a3 and a4, and finally to a5 and a6. Further-
more, it is reasonable to assume that a social network exist among such agents,
and that an agent prefers to share the ride with a friend, in contrast to travelling
with complete strangers. This assumption is motivated by a clear tendency among
ridesharing companies, which tend to favour the formation of groups of users that
are connected in such network. In fact, Uber and Lyft incentivise users to share
rides with their friends, showing that social relationships play a fundamental role
in the ridesharing scenario, which is consequently referred as Social Ridesharing.



78 6 Social Ridesharing
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a5

a6

Fig. 6.1: Example of starting and destination points of 6 agents.

The Social Ridesharing scenario can be naturally modelled as a GCCF problem,
where the set of feasible coalitions is restricted by a graph (i.e., the social network)
and by some additional feasibility constraints (see Section 6.1), e.g., the number of
members of each coalition cannot exceed the number of seats of the corresponding
cars. Figure 6.2 shows how the above example results in a coalition structure CS
formed by three coalitions, each composed by 2 agents.

The Social Ridesharing problem aims at minimising the total cost of all the
cars formed by the system. As a consequence, it is natural to define the value of
each coalition as the travel cost of the associated car, as suggested by Kamar and
Horvitz [59]. However, such work is mostly focused on incentive design aspects for
ridesharing, while we are interested in solving the optimisation problem posed by
SR. Against this background, we present the first model that encodes the above
discussed scenario as a GCCF problem (Section 6.1), and we formally define the
value of each coalition on the basis of the spatial preferences of the agents. Then,
we show how to solve such problem with the CFSS algorithm (Section 6.2).

Subsequently, we generalise our model by incorporating the temporal prefer-
ences of the agents (Section 6.3), so to allow them to express constraints on the
departure and the arriving time. Finally, in Section 6.4 we empirically evaluate our
approach, showing that it can produce significant cost reductions (up to -36.22%)
and it features a good scalability, computing approximate solutions for very large
systems (i.e., up to 2000 agents) and good quality guarantees within minutes.
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S1 = {a1, a2}
S2 = {a3, a4}
S3 = {a6, a5}

CS = {S1, S2, S3}

Fig. 6.2: Social Ridesharing with 6 agents and 3 coalitions (best viewed in colour).

6.1 Problem definition

The Social Ridesharing (SR) problem [13, 20] considers a set of riders A =
{a1, . . . , an}, where n > 0 is the total number of riders, and a non-empty1 set of
drivers D ⊆ A, containing the riders owning a car. Every driver ai ∈ D can host up
to seats (ai) riders in his car, including himself, where the function seats : A→ N0

provides the number of seats of each car. If ai /∈ D, then seats (ai) = 0.
The map of the geographic environment in which the SR problem takes place

is represented by a connected graph M = (P,Q), where P is the set of geographic
points of the map and Q ⊆ P × P is the set of edges among these points. Each
edge is associated to a length by means of the function λ : Q→ R+.

Definition 6.1 (path). A path composed by m points is represented as a tuple
L ∈ Pm, denoting as L[k] the kth point of L.

Definition 6.2 (L). L is the set of all the possible paths among the points in P .

Each rider ai ∈ A has to commute from a starting point pai ∈ P , i.e., its pick-up
point, to a destination point pbi ∈ P .

A key aspect of the SR scenario is the presence of a social network, modelled
as a graph G = (A,E) with E ⊆ A × A, which restricts the formation of groups.
To this end, we adopt Definition 2.1, defining a feasible coalition as follows.

1 If D = ∅ the problem is trivial, as the only solution is represented by the singletons.
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Definition 6.3 (feasible coalition for SR). Given a graph G and a set of riders
S ⊆ A, S is a feasible coalition if it induces a connected subgraph on G, and if
it contains at least one rider whose car has enough seats for all the members.
Formally, we state such a requirement as:

Constraint 1 |S| > 1 =⇒ ∃ai ∈ S ∩D : seats (ai) ≥ |S|, i.e., at least one rider
has a car with enough seats for all the riders.

Notice that such a constraint allows a rider ai /∈ D to be in a singleton. In fact,
if the total number of available seats is less than the total number of riders in
the system, such a rider might need to resort to public transport paying a cost
k ({ai}) for the ticket. Formally, the function k : Asingle −Dsingle → R− provides
such a cost, where Asingle = {{ai} | ai ∈ A}, Dsingle = {{ai} | ai ∈ D}, and R−
represents the set of negative real numbers including zero.2 Notice that if ai ∈ D,
then {ai} is not associated to any value by k (·), as we assume that such riders
always prefer to use their car with respect to public transport.

Now, in several ridesharing online services (e.g., Lyft and Uber) a commuter
declares whether he is available as a driver or as a rider, hence the two sets are
disjoint and a feasible set of riders S contains at most one driver. Formally, the
following additional constraint must hold:

Constraint 2 |S ∩D| ≤ 1, i.e., the number of drivers per car can be at most 1.

Notice that Constraint 2 is optional, but it holds in several established real-world
services, arising from aspects of practical nature. Nonetheless, since our approach
supports a more general model, it can also be applied to scenarios where such a
constraint does not hold (we will clearly specify this in what follows).

Having defined our notion of feasible coalition, in the following section we detail
how we associate a value to each feasible coalition, i.e., we define the characteristic
function adopted by our SR problem.

6.1.1 Coalitional value definition

When a car is formed, it drives through a path that contains all the starting and
destination points of its passengers. Notice that not all the permutation of these
points are valid (e.g., it is not reasonable to go to a rider’s destination point and
then to its starting point). More formally, a valid path must fulfil two constraints
to correctly accommodate the needs of all the passengers.

Definition 6.4 (valid path). Given a feasible set of riders S and a path L ∈ L
of m points, L is said to be valid if the following constraints hold:

Constraint 3 ∃ai ∈ S : seats (ai) ≥ |S| ∧L[1] = pai ∧L[m] = pbi , i.e., L goes from
the driver’s starting point to its destination.

Constraint 4 ∀ai ∈ S ∃x, y : L[x] = pai ∧ L[y] = pbi ∧ x < y, i.e., for each rider,
its starting point precedes its destination.

2 We define R+ = {i ∈ R | i ≥ 0}. N+ and N− are defined in the corresponding ways.
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Henceforth, we refer to the set of all valid paths for a given feasible set of riders S
with VL (S). Following Kamar and Horvitz [59], we define the total cost v (S) of
a feasible set of riders S as

v (S) =

{
k (S) if S ∩D = ∅,
t (L∗S) + c (L∗S) + f (L∗S)︸ ︷︷ ︸

value(L∗S)

otherwise.
(6.1)

On the one hand, if S ∩D = ∅, Constraint 1 imposes that S is formed by a single
rider without a car, hence its cost is provided by k (S). On the other hand, if S
contains at least one driver, its coalitional value is provided by the sum of the
following negative3 cost functions:

• t : L → R−, i.e., the time cost of driving through a given path,
• c : L → R−, i.e., the cognitive cost4 of driving through a given path,
• f : L → R−, i.e., the fuel cost of driving through a given path,

We assume that such functions are additive, i.e., they fulfil the following definition.

Definition 6.5 (additivity). A function z : L → R− is said to be additive if,
given two paths L1, L2 ∈ L, then z (L1 ⊕ L2) = z (L1)+z (L1), where ⊕ represents
the concatenation of paths.

Notice that additivity trivially applies to any cost function in real-world rideshar-
ing scenario. Finally, L∗S represents the optimal path for S, defined as

L∗S = arg max
L∈VL(S)

value (L) . (6.2)

Considering this, a SR problem can be easily translated into a GCCF problem, as
each feasible set of riders is indeed a feasible coalition and v (·) provides its coali-
tional value. Hence, CS∗ represents the optimal coalition structure which max-
imises the social welfare (i.e., minimises the total cost) for the system. However,
the computation of the optimal path in Equation 6.2 represents a hard problem
[74], which could be not solvable in realistic scenarios. Hence, in the next section
we show how a reasonable assumption on the cost functions allows us to reduce
this complexity making such computation tractable.

6.1.2 Optimal path computation

The computational complexity of Equation 6.2 derives from the size of its search
space, formed by all the valid paths for S, i.e., all the paths in the graph M that
contain the starting and destination points of the members of S in an order that
satisfies Constraints 3 and 4. Notice that, given a particular sequence of starting
and destination points that satisfies such constraints, Equation 6.2 requires to
consider multiple valid paths, as the following example shows.

3 Since we consider a maximisation problem, we represent costs as negative values.
4 The fatigue incurred by the driver during the trip, see [59] for more details.
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pa1
pa2 pb2

pb1

Fig. 6.3: Example start and destination points for 2 riders.

Figure 6.3 shows an example map containing the starting and destination points
of 2 agents, in which only one sequence of points is valid, i.e., L = 〈pa1 , pa2 , pb2, pb1〉.
Nonetheless, the set of valid paths is much larger (i.e., 33 = 27 valid paths), since
there exist 3 possible paths for each of the 3 couples of consecutive points in L.
However, it is reasonable to assume that the driver will go through the shortest
path for each of these 3 couples of points.

Assumption 1 When the driver has to go from one point in L to the next one,
it will choose the shortest path (considering the distances provided by λ (·)) con-
necting such points.

Assumption 1 allows us to collapse the search space of Equation 6.2 to VT (S),
defined as follows.

Definition 6.6 (VT (S)). Given a feasible coalition S, VT (S) is the set of tuples
that contain all and only the start and destination points of the members of S
(without repetitions) and that satisfy Constraints 3 and 4.

In order to explain how to simplify the solution of Equation 6.2 given the above
assumption, we define the function concat (·).

Definition 6.7 (concat (·)). Given L ∈ VT (S), the function concat : VT (S)→ L
provides the path obtained as the concatenation of all the shortest paths between
one point in L and the following one. Formally, concat (L) is a tuple defined as

concat (L) =

|L|−1⊕
k=1

sp (L[k], L[k + 1]) ,

where the function sp : P ×P → R+ provides the shortest path between two points,
considering the length provided by the λ (·) function.

The function concat (·) can be computed in O ((|L| − 1) · (|Q|+ |P | · log |P |)), as-
suming that sp (·) is implemented using Dijkstra’s algorithm [40]. Moreover, if M
is an euclidean graph, concat (·) can be computed in O ((n− 1) · |Q|) with the A*
algorithm [53]. Against this background, Equation 6.2 can be rewritten as

L∗S = arg max
L∈VT (S)

value (concat (L)) . (6.3)

Notice that the search space of Equation 6.3 is VT (S), which is significantly
smaller than VL (S) in Equation 6.2, and although being still exponential with
respect to |S|, such computational complexity is manageable for reasonably sized
groups of riders. In fact, VT (S) contains only 2520 valid tuples for |S| = 5 (i.e.,
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the number of seats of an average car). Such result allows us to evaluate each
coalition S by means of Equation 6.1, and hence we can address the SR scenario
as a GCCF problem.

Furthermore, on the basis of Assumption 1 we can formulate Theorem 6.18, the
fundamental theoretical result that allows us to compute an upper bound for the
SR characteristic function. As a consequence, we can employ the CFSS algorithm
presented in Section 4.4 to solve the SR problem.

6.2 CFSS for the SR problem

In order to solve the SR problem, the original version of CFSS [14, 16] must be
modified to assess the additional constraints introduced in Section 6.1. In partic-
ular, to ensure that Constraint 1 and optionally Constraint 2 hold, we must avoid
the formation of coalitions which are not feasible sets of riders. This is achieved by
preventing the contractions of the green edges that would result in the violation of
such constraints. Notice that such edges must be marked in red, even if we are not
visiting the corresponding subtrees: in fact, this is equivalent to traversing such
search spaces and discarding any possible solution they may contain, because such
solutions would violate one of the above mentioned constraints.

A key enhancement for the efficiency of CFSS is the use of a branch and
bound search strategy to prune significant parts of the search space, enabling a
general bounding technique for m + a functions (Theorem 4.17). However, the
characteristic function defined in Equation 6.1 is not m + a, since it depends on
L∗S , and in particular on the actual position of the start and destination points of
the riders.

As an example, consider Figure 6.4, which shows the start and destination
points for 3 riders, i.e., A = {a1, a2, a3}, in which only a1 owns a car, i.e.,
D = {a1}. For simplicity, we assume that v (S) is equal to the length of L∗S ,
and k ({a2}) = k ({a3}) = −1. In this example, v ({a1}) = −3, v ({a2}) = −1,
v ({a3}) = −1. However, we notice that pa2 and pb2 are actually part of the path
travelled by a1, hence it is reasonable for a2 to join a1 in the coalition {a1, a2}.
In fact, v ({a1, a2}) = v ({a1}) = −3 > v ({a1}) + v ({a2}) = −3 − 1 = −4. The
optimal path for S = {a1, a3} is L∗S = 〈pa1 , pa3 , pb3, pb1〉. On the other hand, a3 start
and destination points are outside a1’s path,hence ridesharing is not effective in
this case: v ({a1, a3}) = −7 < v ({a1}) + v ({a3}) = −3− 1 = −4. Notice that this
particular characteristic function cannot be seen as the sum of a superadditive and
a subadditive part, since it exhibits a superadditive behaviour for some coalition
structures, i.e., v ({a1, a2}) > v ({a1}) + v ({a2}), while it is subadditive for some
others, i.e., v ({a1, a3}) < v ({a1}) + v ({a3}).

pa1 pa2 pb2 pb1 pa3 pb3

1 km

Fig. 6.4: Example start and destination points for 3 riders.
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Hence, in the next section we provide alternative bounding techniques that can be
used in our ridesharing scenario.

6.2.1 Bound computation

Given a feasible coalition structure CS in our search tree, we now show how to
compute an upper bound M (CS) for the values assumed by the characteristic
function in ST (CS), i.e., M (CS) ≥ V (CSi) ∀CSi ∈ ST (CS). We use this value
to avoid visiting ST (CS) if M (CS) is not greater than the current best solution.
This allows us to realise the same pruning technique discussed in Section 4.4 in
the context of m+ a functions.

First, we provide a method to compute M (CS) in scenarios where Constraint 2
holds. In these environments it is not possible to merge coalitions both containing
a driver, since only single riders not owning a car are allowed to join existing
groups. The addition of a rider to a feasible coalition S can only result in a greater
cost, as shown by the following lemma.

Lemma 6.8. Given two feasible coalitions S and S′ such that S′ = S ∪ {ai} and
ai 6∈ D, then v (S) ≥ v (S′).

Proof. By contradiction. Suppose v (S) < v (S′), i.e., value (L∗S) < value (L∗S′),
since both S and S′ contain one driver. Notice that such driver, namely aj , is the
same for both S and S′, by definition of S′. Now, L∗S′ is a valid path also for S,
since L∗S′ starts at paj and ends at pbj (satisfying Constraint 3), and Constraint 4 is
trivially verified since S ⊂ S′. This violates Equation 6.2, since v (S) = value (L∗S)
does not consider the optimal path for S, producing a contradiction.  

Therefore, the sum of the costs of all the cars (i.e., all the coalitions containing
a driver) can only increase after such an addition. The above lemma allows us to
prove Theorem 6.10. For convenience, we first make the following definition.

Definition 6.9 (Ad (CS)). Given a coalition structure CS, Ad (CS) is the set of
coalitions in CS that contain at least one driver, i.e., the set of cars. Formally,

Ad (CS) = {S ∈ CS | S ∩D 6= ∅}.

Theorem 6.10. If Constraint 2 holds, for any feasible coalition structure CS

M1 (CS) =
∑

S∈Ad(CS)

v (S) (6.4)

is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree rooted in
CS. Formally, M1 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. By contradiction. Suppose there exists a coalition structure CS′ ∈ ST (CS)
such that V (CS′) > M1 (CS), i.e., CS′ results in a cost lower3 than M1 (CS).
Now, since CS′ ∈ ST (CS) and Constraint 2 holds, CS′ must have been formed
by adding single riders to already formed cars in CS. All such cars correspond to
coalitions whose values are lower than the original ones in CS (Lemma 6.8). This
contradicts V (CS′) > M1 (CS).  
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We now discuss how to compute an upper bound without assuming Constraint 2.
For convenience, we first define some theoretical concepts.

Definition 6.11 (Pab). Pab is the set of the start and destination points of all the
riders, i.e.,

Pab =
{
p ∈ P

∣∣ ∃ai ∈ A : p = pai or p = pbi
}
.

Definition 6.12 (Pcouples). Pcouples is the set of all the couples of different points
in Pab, i.e.,

Pcouples = {(p, q) ∈ Pab × Pab | p 6= q} .
Definition 6.13 (P1,a (ai) and P1,b (ai)). Given a rider ai ∈ A, P1,a (ai) is the
set of all the shortest paths from ai’s starting point to the start and destination
points of any other rider, i.e.,

P1,a = {L | L = sp (pai , p) ∀p ∈ Pab : p 6= pai }.

Similarly, we define P1,b (ai) considering ai’s destination point.

Definition 6.14 (P2,a (ai) and P2,b (ai)). Given a rider ai ∈ A, P2,a (ai) is the
concatenation of all the couples of shortest paths from ai’s starting point to the
start and destination points of any other rider, i.e.,

{L | L = sp (pai , p)⊕ sp (pai , q) ∀ (p, q) ∈ Pcouples : p 6= pai and q 6= pai }.

Similarly, we define P2,b (ai) considering ai’s destination point.

Definition 6.15 (m (·)). The function m : A→ R− is defined as

m (ai) =


max

L∈P1,a(ai)
value (L) + max

L∈P1,b(ai)
value (L) , if ai ∈ D

max
L∈P2,a(ai)

value (L) + max
L∈P2,b(ai)

value (L) , otherwise.

(6.5)

(6.6)

Intuitively, the purpose of m (ai) is to provide an upper bound on the value (·)
function corresponding to the edges incident on pai and pbi , when such edges are
part of a path L driven by a car. If ai is a driver, such an upper bound is calculated
by considering the best edges (i.e., the ones that maximise value (·)) incident on
each point (Equation 6.5). In contrast, if ai is not a driver, Equation 6.6 considers
the best couples of edges incident on each point. We now provide an example to
better explain how the m (·) function is calculated.

pa1

pa2 pb2

pb1 pa3 pb3

Fig. 6.5: Example start and destination points for 3 riders.
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Figure 6.5 shows the start and destination points of 3 riders, in which the edges
represent the shortest paths between any couple of points (under Assumption 1).
Furthermore, assume that a car is formed among such agents, and that a1 and a2

are drivers, while a3 is not. Notice that we do not know in advance whether a1 or
a2 will be the optimal driver of such car. For the sake of brevity, in the following
discussion we only refer to the agents’ starting points, but the same concepts apply
symmetrically to the destination ones. Notice that, since a3 is not a driver, pa3 will
necessarily be an inner point in L, as a consequence of Constraint 3. It follows that
L will contain exactly two edges incident on pa3 . Now, since we are interested in
computing an upper bound on value (·), we consider the couple of edges incident
on pa3 that maximises such function (Equation 6.6).

On the other hand, since we do not know in advance if a1 (resp. a2) will be the
optimal driver of the car, we cannot predict whether pa1 (resp. pa2) will be the first
point or an inner point in L. In other words, we do not know exactly whether one
or two edges incident on pa1 (resp. pa2) will be part of L. Therefore, in Equation 6.5
we assume that only one edge is present in L, as a conservative measure. This is
guaranteed to provide an upper bound on value (·), as such function is negative
and, hence, the value of the best couple of edges is lower than the value of the best
single edge. We now define the function M2 (·) on the basis of m (·).

Definition 6.16 (M2 (·)). The function M2 : CS (G)→ R− is defined as

M2 (CS) =
1

2
·

∑
ai∈Ud(CS)

m (ai) , where Ud (CS) =
⋃

S∈Ad(CS)

S. (6.7)

Intuitively, Ud (CS) is the set of all agents (both riders and drivers) that are pas-
sengers of a car in CS.

We now prove the following lemma, that will support the proof of Theorem 6.18.

Lemma 6.17. Given a feasible coalition structure CS and a coalition structure
CS′ ∈ ST (CS) such that V (CS′) > M2 (CS), then

∃S′ ∈ Ad (CS′) : v (S′) >
1

2
·
∑
ai∈S′

m (ai) . (6.8)

Proof. By contradiction. First notice that

V (CS′) = V (Ad (CS′)) + V (CS′ \Ad (CS′)) ,

i.e., V (CS′) is the sum of the values of all the cars in CS′ plus the values of the
singletons of riders that are not drivers. From V (CS′) > M2 (CS), it follows that

V (Ad (CS′)) + V (CS′ \Ad (CS′)) >
1

2
·

∑
ai∈Ud(CS)

m (ai) .

Since V (CS′ \Ad (CS′)) =
∑
S∈Ad(CS′) k (S) ≤ 0 (Equation 6.1), it follows that

V (Ad (CS′)) >
1

2
·

∑
ai∈Ud(CS)

m (ai) .
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Since we only merge coalitions in the formation of new coalition structures in
ST (CS), it is impossible that a rider exits a car, i.e., Ud (CS) ⊆ Ud (CS′). More-
over, since the function m (·) is negative (see Definition 6.15), it is also true that

V (Ad (CS′)) >
1

2
·

∑
ai∈Ud(CS′)

m (ai) . (6.9)

Now, suppose that (6.8) is not true, i.e.,

v (S′) ≤ 1

2
·
∑
ai∈S′

m (ai) , ∀S′ ∈ Ad (CS′) .

If we apply such property to all the coalitions S′ considered in the summation∑
S′∈Ad(CS′) v (S′) = V (CS′) , we obtain

V (Ad (CS′)) ≤ 1

2
·

∑
ai∈Ud(CS′)

m (ai) ,

which contradicts (6.9).  

Building upon such lemma, we now prove the following theorem. Notice that, as
previously introduced, such theorem is based on the validity of Assumption 1,
which is also the key concept that allows us to compute the optimal path for a
given coalition thanks to Equation 6.3 in a feasible amount of time.

Theorem 6.18. If Assumption 1 holds, for any feasible coalition structure CS
M2 (CS) is an upper bound for the value of any CS′ in ST (CS), i.e., the subtree
rooted in CS. Formally, M2 (CS) ≥ V (CS′) for all CS′ ∈ ST (CS) .

Proof. By contradiction. Suppose there exists a coalition structure CS′ ∈ ST (CS)
such that V (CS′) > M2 (CS). By applying Lemma 6.17, there exists S′∈Ad (CS′)
such that v (S′) > 1

2 ·
∑
ai∈S′ m (ai) . Since Assumption 1 holds, it follows that

value (concat (L∗S′)) >
1

2
·
∑
ai∈S′

m (ai) , (6.10)

for some L∗S′ ∈ VT (S′) . Now, value (·) is additive (Definition 6.5), thus it can be
seen as the sum of the costs of all the subpaths that form concat (L∗S′) . Formally,

value (concat (L∗S′)) =

|L∗
S′ |−1∑
k=1

value (sp (L∗S′ [k], L∗S′ [k + 1])) . (6.11)

By combining (6.10) and (6.11) we obtain

|L∗S′ |−1∑
k=1

value (sp (L∗S′ [k], L∗S′ [k + 1])) >
1

2
·
∑
ai∈S′

m (ai) . (6.12)
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Now, it is easy to see that the cost provided by
∑
ai∈S′ m (ai) cannot be higher

than twice5 the cost of any valid path that goes through the start and destination
points of the members of S′. It follows that 1

2 ·
∑
ai∈S′ m (ai) cannot be lower than

the corresponding value (·) for any of such valid paths, since we consider negative
cost functions. This contradicts (6.12).  

Theorems 6.10 and 6.18 allows to compute an upper bound on V (·) for all the
coalition structures in ST (CS). As a consequence, we can solve the SR problem
by adopting a branch and bound approach based on CFSS (Algorithm 9), i.e., SR-
CFSS (Algorithm 11). In addition to the different bounding technique, SR-CFSS
differs from CFSS as it includes the constraints deriving from the SR model, i.e.,
Constraint 1 and, optionally, Constraint 2. Specifically, this is achieved by includ-
ing an additional check (i.e., line 4 in the SR-Children routine) that discards the
solutions that violate such constraints (cf. Algorithm 8). Notice that SR-CFSS de-
rives all the anytime approximate properties of CFSS (see Section 4.4.2), since we
can apply the technique in Equation 4.2 using M1 (·) or M2 (·) respectively defined
in Equations 6.4 and 6.7. The model defined in Section 6.1 takes into account only
the spatial aspect of the SR problem. In what follows, we show how to incorporate
the time preferences of the commuters in our model and algorithms.

Algorithm 11 SR-CFSS(G)

1: Gc ← G with all green edges
2: best← Gc {Initialise current best solution with singletons}
3: Front← ∅ {Initialise search frontier Front with an empty stack}
4: Front.push (Gc) {Push Gc as the first node to visit}
5: while Front 6= ∅ do {Branch and bound loop}
6: node← Front.pop () {Get current node}
7: if M2 (node) > V (best) then {Can also use M1 (node) with Constraint 2}
8: if V (node) > V (best) then {Check function value}
9: best← node {Update current best solution}

10: Front.push (SR-Children (node)) {Update Front}
11: return best {Return optimal solution}

Algorithm 12 SR-Children(Gc)
1: G′c ← Gc = (A, E , colour) {Initialise graph G′ with Gc}
2: Ch← ∅ {Initialise the set of children}
3: for all e ∈ E : colour (e) = green do {For all green edges}
4: if GreenEdgeContr (G′c, e) meets Constraint 1 (and Constraint 2) then
5: Ch← Ch ∪ {GreenEdgeContr (G′c, e)}
6: Mark edge e with colour red in G′c
7: return Ch {Return the set of children}

5 If we sum all the values of the couples of edges incident to the points that form a given
path, we consider each edge twice.
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6.3 Introducing time constraints

In order to consider the riders’ time preferences in the computation of the optimal
coalition structure, we assume that each rider ai ∈ A specifies its desired departure
time τai within the interval θai = [τai −αai , τai +βai ] ⊆ N+.6 Similarly, ai expresses its
preferences on the arriving time τ bi by means of the interval θbi = [τ bi −αbi , τ bi +βbi ] ⊆
N+. Figure 6.6 shows an example of departure and arriving time constraints.

timeline

τai − αai τai + βai

τai

τ bi − αbi τ bi + βbi

τ bi

ai’s trip
θai θbi

Fig. 6.6: Example of departure and arriving time constraints.

Then, we include these preferences modifying the characteristic function definition
in Equation 6.1 as

v (S) =

{
k (S) if S ∩D = ∅,
t (L∗S) + c (L∗S) + f (L∗S) + θS (L∗S , τ

∗
S)︸ ︷︷ ︸

value(L∗S ,τ∗S)

otherwise.
(6.13)

In particular, we introduce the term θS : VL (S)× N+ → R− as a measure of the
extent to which the time preferences of the members of S have been fulfilled by a
trip starting at a given time and going through a given valid path. We quantify such
an extent with a cost for each starting and destination point that is proportional
to the difference between the actual pick-up/arriving time and the desired one,
i.e.,

θS (L, τ) =
∑
ai∈S

∆a
S (ai, L, τ) +∆b

S (ai, L, τ) , (6.14)

where ∆a
S : S × VL (S) × N+ → R− and ∆b

S : S × VL (S) × N+ → R− represent
such costs (for pick-up and destination points respectively) for each ai ∈ S i.e.,

∆a
S (ai, L, τ) =

{
γ1 · |timeL (pai , τ)− τai | if timeL (pai , τ) ∈ θai ,

−∞ otherwise,
(6.15)

∆b
S (ai, L, τ) =

{
γ2 · |timeL

(
pbi , τ

)
− τ bi | if timeL

(
pbi , τ

)
∈ θbi ,

−∞ otherwise,
(6.16)

where γ1, γ2 ∈ R+ are the costs associated to one time unit of delay/anticipation
for pick-up and destination points respectively. Notice that, even if other for-
mulations for θS are possible, the crucial feature is the enforcement of the hard
constraint (i.e., θS = −∞) outside θi.

6 We consider a discrete time domain, e.g., seconds or minutes.
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The function timeL : L× N+ → N+ represents the arrival time at each of the
points of L considering a given departure time, i.e.,

timeL (p, τ) = τ +

j−1∑
k=1

δ (L[k], L[k + 1]) , where L[j] = p (6.17)

and the function δ : Q→N+ measures the travel time trough a given edge.
Equations 6.15 and 6.16 induce a series of hard constraints on the depar-

ture/arriving time for each rider ai ∈ S, as each ai is not willing to leave/arrive
earlier that τi−αi nor later than τi +βi. Thus, we define θS = −∞ if any of these
constraints is violated. If such set of time constraints is not satisfiable, we denote
S as time infeasible (see Section 6.3.2). We define the optimal path L∗S and the
optimal departure time τ∗S accordingly to Equation 6.2:

(L∗S , τ
∗
S) = arg max

L∈VL(S)
τ∈θaj ∀aj∈S∩D

value (L, τ) . (6.18)

We reduce the search space for L∗S in Equation 6.18 by applying the same tech-
niques discussed in Section 6.1.2 (i.e., by considering Assumption 1) and obtaining

(L∗S , τ
∗
S) = arg max

L∈VT (S)
τ∈θaj ∀aj∈S∩D

value (concat (L) , τ) . (6.19)

Notice that, in Equation 6.19, the computation of τ∗S is still carried out in a näıve
way, going through every possible timestep in the time intervals specified by the
drivers in S. In the following section, we explain a better approach to compute τ∗S .

6.3.1 Optimal departure time computation

In this section we address the problem of computing the optimal departure time τ∗S
for a given coalition S. Problems involving time constraints arise in various areas
of computer science, especially in scheduling contexts [35]. In particular, Dechter
et al. [35] define the so-called Simple Temporal Problems (STP), a particular type
of CSP (see Definition 2.8) in which a variable τi corresponds to a continuous time
point and a binary constraint (τi, τj) is associated to one time range that contains
the valid values for τj − τi. In the context of SR, if τ1 and τ2 are respectively
the departure and the arrival time for a particular agent, the constraint (τ1, τ2)
associated to the range [0′, 60′] means that its arrival cannot happen more than 60
minutes after its departure. Khatib et al. [64] later extended the concept of STP
associating a function (i.e., a preference) to each constraint, in order to differen-
tiate among valid solutions and select the one that best meets such preferences.
The authors also characterise the complexity of solving such problem (denoted
as STPP) as NP-Complete in the general case, while it is tractable if preferences
are expressed by linear functions. Such complexity results by virtue of the fact
that STPPs with linear preferences can be expressed as Linear Programming (LP)
problems, which can be solved in polynomial time [26]. However, even if our pref-
erences are linear (Equations 6.15 and 6.16), our time domain is discrete, resulting
in a problem of Integer LP, which is NP-Hard in the general case [26].
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Nonetheless, our formalisation allows us to restrict such problem to a particu-
lar, tractable case. Specifically, our scenario requires to compute only the optimal
departure time for the first point in the path, i.e., τ∗S , since we assume no delay
between the arrival to a point and the departure for the next point in the path
(Equation 6.17).7 Against this background, we now propose an algorithm to com-
pute the best departure time for a car S (given a tuple L ∈ VT (S) and a driver
aj ∈ S ∩ D), so to avoid trying every possible departure time for the trip of S.
Algorithm 13 achieves this task by considering the ideal departure time of the
driver, i.e., τaj , and by applying a sequence of shifts so to obtain the optimal τ .

First (lines 1–7), we initialise τ with the ideal departure time of the driver,
and we initialise p, n and z, which will respectively count the number of points
in which we register an arriving time that is late, early or on time, with respect
to the desire expressed by the agents for those points. The variables post and
antic function as guards to check to what extent it is possible to delay/anticipate
departure without violating any time constraint. Finally, we also define diffs which
contains the difference between the actual and the ideal time, for every point in
L. Lines 8–11 set these variables. After this, at line 12 we check whether it is
possible to satisfy all the time constraints. If the conditional statement is true,
then at least two points are outside of their interval, one is late and one is ahead
of time, or it may be necessary to anticipate τ of a given amount, but such action
would result in the violation of another constraint. In such cases we return a null
solution. If no constraints are violated, we improve τ in the cycle at lines 14–31

so that
∑|L|
i=1 |diffs[i]| is minimised and does not invalidate any constraint. Notice

that, to achieve this result, it is enough to check the direction of the points of the
path. On the one hand, if the majority of the points are positive (the car is late)
then we will have to anticipate τ . On the other hand, if the majority of the points
are negative (the car is early) then we will have to delay τ .

Once we have a method to compute the optimal τ given a tuple L ∈ VT (S)
and a driver aj ∈ S ∩ D, we can finally compute the optimal path L∗S and the
optimal driver a∗S by modifying Equation 6.19 in the following way:

(L∗S , a
∗
S) = arg max

L∈VT (S)
aj∈S∩D

value (concat (L) ,OptimalDepTime (L, aj)) . (6.20)

L∗S and a∗S are computed by selecting the best combination over the possible valid
tuples in VT (S) and drivers in S. For each of these combinations, we consider the
corresponding optimal departure time provided by Algorithm 13. If such algorithm
returns a null solution, the corresponding value (·) is −∞, and hence, that partic-
ular combination is discarded. Equation 6.20 inherently provides τ∗S , which is the
optimal departure time for the maximising L∗S and a∗S . Notice that, following the
same discussion at the end of Section 6.1.2, the search space of Equation 6.20 is
at most 2520 · 5 = 12600 combinations of valid tuples and drivers for |S| = 5, and
thus, it can be exhausted with a manageable computational effort.

7 Our model can be easily generalised by dropping such an assumption, hence allowing a
delay between the arrival to each point and the departure for the next one. Notice that,
even if such problem is still untractable in the general case due to the discretisation
of the time domain, it can be transformed to a tractable LP problem by means of LP
relaxation techniques [26]. This topic will be considered as future work.
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Algorithm 13 OptimalDepTime(L, aj)

1: τ ← τaj {Initialise current best solution with driver’s ideal departure time}
2: p← 0 {Positive points counter (i.e., points where L is late)}
3: n← 0 {Negative points counter (i.e., points where L is early)}
4: z ← 0 {Zero points counter (i.e., points where L is on time)}
5: post← +∞ {Maximum delay without constraint violation}
6: antic← −∞ {Maximum anticipation without constraint violation}
7: diffs ← 〈{Differences among ideal times and actual times}
8: for all i ∈ {1, . . . , |L|} do {For all tuple points}
9: diffs[i]← difference between timeL (i, τ) and ideal arriving time at L[i]

10: Increment p or n or z based on the sign of diffs[i]
11: Update post and antic

12: if post < antic then {Conflict between two constraints}
13: return ∅
14: repeat
15: shift← 0
16: if post < 0 then
17: shift← post
18: else if antic > 0 then
19: shift← antic
20: else if p > n+ z and antic < 0 then {Majority of points are late}
21: lwp← lowest positive in diffs
22: shift← −min{lwp,−antic}
23: else if n > p+ z and post > 0 then {Majority of points are early}
24: grn← greatest negative in diffs
25: shift← min{−grn, post}
26: if shift 6= 0 then
27: τ ← τ + shift
28: Update diffs
29: Recompute p and n and z
30: Update antic and post

31: until shift = 0
32: return τ

As said above, for some coalitions it is impossible to satisfy all time constraints.
Such coalitions are associated to −∞ by Equations 6.15 and 6.16, and hence, they
can never be part of the optimal solution. However, at the moment we detect such
infeasibility only after the execution of Algorithm 13. In contrast, it would be
desirable to identify such coalitions in advance and avoid their formation within
SR-CFSS. By doing so, we could reduce the search space, hence improving the
performance of our approach. We now show how we achieve this objective.

6.3.2 Time infeasible coalitions

In this section we propose an improved method to detect time infeasible coalitions.
Intuitively, such coalitions are characterised by a set of time constraints that is
not satisfiable, as formalised by the following definition.
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Definition 6.19 (time infeasible coalition). A feasible coalition S is said to be
time infeasible if θS (L, τ) = −∞ for all L ∈ VT (S) and all τ ∈ θaj ∀aj ∈ S ∩D.

Since time infeasible coalitions can never be part of the optimal solution, we are
interested in exploiting such property so to reduce the search space of the SR
problem. One simple approach would be to check, for each solution CS computed
during the traversal of the search tree, if CS contains a time infeasible coalition,
and in such case, discard CS and the corresponding subtree ST (CS).

Unfortunately, such a technique can lead to the exclusion of valid solutions,
since a time infeasible coalition can become time feasible as a consequence of an
edge contraction. We provide the following example to better explain this concept.
Let S = {a1, a2} with a1 ∈ D (i.e., a1 is the driver), and let θa1 = [09:00 −
15′, 09:00 + 15′] and θa2 = [09:45 − 15′, 09:45 + 15′]. Assuming that the path that
joins pa1 and pa2 (i.e., the starting points of a1 and a2 respectively) corresponds
to a travel time of 10 minutes, it is not possible to find a departure time τ such
that a1 does not arrive too early at pa2 . Thus, θa2 will always be violated, and
hence, S is time infeasible. Now, assume that, as the result of an edge contraction,
S′ = S ∪ {a3} is formed, with θa3 = [09:20− 15′, 09:20 + 15′]. If the paths from pa1
to pa3 and from pa3 to pa2 both require 10 minutes, it is possible to satisfy the time
constraints of all the members of S′. Hence, S′ is no longer time infeasible.

Nevertheless, under certain conditions it is possible to identify a particular
type of time infeasible coalitions that will always result in other time infeasible
coalitions as a result of an edge contraction. Such coalitions can be safely discarded
from FC (G), pruning a significant portion of the search space.

Proposition 6.20. Let ai, aj ∈ A with ai ∈ D and aj 6∈ D. If we consider Con-
straint 2 (i.e., one driver per car) and [τaj + βaj , τ

b
j −αbj ] 6⊆ [τai −αai , τ bi + βbi ], then

ai and aj can never be in a time feasible coalition together, i.e., ∀S ∈ FC (G) :
{ai, aj} ⊆ S, S is a time infeasible coalition.

Proof. If [τaj + βai , τ
b
j − αbj ] 6⊆ [τai − αai , τ

b
i + βbi ], then τaj + βai < τai − αai or

τ bj −αbj > τ bi +βbi . Intuitively, aj ’s latest departure time is earlier than ai’s earliest
departure time or aj ’s earliest arriving time is later than ai’s latest arriving time.
Since we consider Constraint 2, ai can be the only driver of any coalition containing
both ai and aj . Thus, it is trivial to verify that the above time constraint will
always be violated, since travelling back in time is not (yet) possible. ut

If we consider a scenario that enforces Constraint 2, then Proposition 6.20 can
be used to identify couples of agents (ai, aj) that can never be part of the same
coalition, effectively introducing some additional hard constraints on the formation
of coalitions. Such constraints can be easily expressed by marking each edge (ai, aj)
(if existent) as red in the initial graph G, so to avoid the formation of a coalition
in which ai and aj are together. On the other hand, if ai and aj are not connected
by an edge in G, we introduce a new edge marked in red, since if we do not do so,
then ai and aj will be part of the same coalition for at least one coalition structure
in the search tree. As an example, consider Figure 6.7.
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a1

a2 a3

Fig. 6.7: Example of a social network with 3 agents.

Assume that a2 and a3’s time constraints verify Proposition 6.20. If we do not
introduce a new red edge between a2 and a3, the grand coalition will be evaluated
during the traversal of the search tree, even if such coalition is guaranteed to be
time infeasible. On the other hand, the introduction of such red edge avoids such
inefficiency in our approach.

Against this background, we can exploit time constraints to restrict the for-
mation of coalitions. Moreover, we can also employ the upper bound techniques
discussed in Section 6.2.1, as we motivate in the following section.

6.3.3 Bound computation

The upper bound methods proposed in Section 6.2.1 can also be applied when we
introduce time constraint, as shown by the following proposition.

Proposition 6.21. Theorems 6.10 and 6.18 are valid even if we substitute the
definition of v (S) in Equation 6.1 with the definition in Equation 6.13.

Proof. Given a coalition S ∈ FC (G), the value provided by v (S) in Equation 6.1
is necessarily greater than the one provided by Equation 6.13, since the latter is
equal to the former with the addition of θS (L∗S , τ

∗
S), which is negative by defini-

tion. Notice that the t (L∗S) + c (L∗S) + f (L∗S) is exactly the same, since we make
Assumption 1 in both cases, and we assess L∗S in the same way. As a consequence,
given a feasible coalition structure CS, V (CS) is greater if we consider Equa-
tion 6.1 with respect to Equation 6.13. Therefore, since Theorems 6.10 and 6.18
provide upper bounds and are valid considering Equation 6.1, they are also valid
with Equation 6.13. ut

In what follows, we show how we test our approach to solve the SR problem.

6.4 Empirical evaluation

The main goals of the empirical analysis are the following:

1. To estimate the social welfare improvement when our SR model is employed.
2. To evaluate the performance of the optimal version of SR-CFSS in terms of

runtime and scalability.
3. To evaluate the approximate performance and guarantees that SR-CFSS can

provide when scaling to very large number of agents, i.e., up to 2000 agents.
4. To investigate the impact of time constraints on the above properties.
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Since there are no publicly available datasets which include both spatial and social
data for the same users, in our empirical evaluation we consider two separate real-
world datasets and we superimpose the first on the second one. In particular, our
map M = (P,Q) is a realistic representation of the city of Beijing (Figure 6.8), with
|P | = 8330 points and |Q| = 13290 edges, equivalent to an average resolution of a
point every ∼10 meters. This map has been derived from the GeoLife dataset8 [123]
provided by Microsoft Research, which comprises 17621 trajectories with a total
distance of about 1.2 million km, recorded by different GPS loggers with a variety
of sampling rates. This pool of trajectories is also adopted to sample random paths
used to provide the start and destination points of the riders.

Moreover, such a dataset also includes the timestamp of each trajectory, al-
lowing us to create a distribution of the departure and arrival times (Figure 6.9),
which is used to sample such parameters for each agent in all our experiments,
unless otherwise stated (i.e., in all experiments considering time constraints ex-
cept Section 6.4.2). As expected, this distribution exhibit two peaks, one in the
morning from 7:00 to 9:00 and one in the evening from 17:00 to 19:00.

In each experiment, G is obtained from the same Twitter dataset discussed
in Section 5.4. In our experimental evaluation there is no mapping between the
trajectory data and the social graph, since they belong to independent projects.

In all our experiments, the default number of agents n is 50. We adopt a cost
model that considers fuel expenses, i.e., v (C) = Kfuel · L∗C , where L∗C represents
the length of L∗C in km, Kfuel = −0.06 e/km (considering a fuel cost of −1 e per
litre and an average consumption of 1 litre of fuel every 15 km) and k ({ai}) = −3
e ∀ai ∈ A, which represents the average public transportation cost, i.e., a bus or
a train ticket. Moreover, we assume that each car has a capacity of 5 seats, i.e.,
seats (ai) = 5 ∀ai ∈ D. When time constraints are considered, we define γ = −2
e/h and a time interval (i.e., the duration of θi) of 30’, unless otherwise stated.

Fig. 6.8: The map of Beijing derived from the GeoLife dataset.

8 Available at http://research.microsoft.com/en-us/projects/geolife.

http://research.microsoft.com/en-us/projects/geolife
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Fig. 6.9: Default distribution of departure/arrival times (obtained from GeoLife).

All our test are done considering Constraint 2 (drivers always drive their cars), as
it models many real-world online services, e.g., Lyft and Uber. Hence, we employ
both the bounding techniques detailed in Section 6.2.1 and we take the minimum
one, since both are valid. Each experiment is repeated on 20 random instances,
and we report the average and the standard error of the mean of the results.
Our approach is implemented in C9 and executed on a machine with a quad-core
3.40GHz processor and 16 GB of memory.

6.4.1 Social welfare improvement without time constraints

In our first experiment we consider the improvement of the social welfare (i.e., the
cost reduction for the overall system) when using our SR model without time con-
straints, compared to the scenario in which every rider adopts its own conveyance
(i.e., no ridesharing). This gives an indication of what gain can be achieved by the
overall community when using our system for ridesharing. Formally, we define the

social welfare improvement as 100 ·
∣∣∣V (CS∗)−V (Asingle)

V (Asingle)

∣∣∣ . Such an improvement is

influenced by the percentage of drivers in the system (Figure 6.10), which deter-
mines the number of available seats and the number of riders which can share a
ride without having to resort to public transport. Moreover, with more drivers it
is more probable that a rider can join a car whose path is closer to him/her. On
the other hand, if the majority of the riders own a car (i.e., > 80%), ridesharing is
not very effective since too few riders without a car can benefit from sharing their
commutes with a driver. In particular, when only the 10% of the total riders own
a car, the average cost reduction is −23.49%, reaching −36.22% when half of the
riders owns a car.

9 Our implementation is available at https://github.com/filippobistaffa/SR-CFSS.

https://github.com/filippobistaffa/SR-CFSS
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Fig. 6.10: Social welfare improvement.

To show the importance of an optimal approach, we benchmark our algorithm
against a greedy one, in which every driver chooses its next stop as the closest
among the destinations points of his current passengers and the starting points of
the remaining riders. This choice is made considering the constraints imposed by
the social network, avoiding the formation of unfeasible coalitions. As Figure 6.10
shows, our method allows superior cost reductions with respect to such a greedy
approach, which can provide a maximum improvement of −19.55% for |D| = 20%.
Notice that, when the majority of the riders owns a car, the greedy approach cannot
improve upon the value of the baseline solution (i.e., the one with no ridesharing).

6.4.2 Social welfare improvement with time constraints

We now investigate how the social welfare improvement varies when we introduce
time constraints. Specifically, we now study the influence of the duration of the θi
interval (i.e., the difference between the latest and the earliest departure/arrival
time) and the distribution of the agents’ departure times on the social welfare.

To evaluate such influence, we vary these two parameters as follows. On the one
hand, we sample the departure times of the agents within a time window of 6 hours
according to 3 probability distributions (Figure 6.11). Specifically, we consider a
uniform distribution (i.e., the departure times are distributed uniformly in the time
window) and two Gaussian distributions, in which the agents who desire to leave
in the two central hours of the time window are respectively the 30% (soft peak)
and the 40% (hard peak) of the total. On the other hand, we vary the duration of
each θi by varying the difference between the earliest/latest tolerated time and the
ideal time for each agent. For simplicity, we assume that αai = βai = αbi = βbi are
all equal for all agents, and we vary such value, namely θi’s radius, within [5′, 60′].
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Fig. 6.11: Probability distributions in a time window of 6 hours.

Following the result of the experiments in the previous section, we only consider
D = 50%, i.e., the scenario that results in the highest social welfare improvement.
Figure 6.12 shows that, in general, the social welfare improvement increases when
we increase the θi’s radius, since it is easier to form coalitions, and consequently,
to reduce the overall travel cost, if agents are more tolerant with respect to time
constraints. Notice that such an improvement saturates when the radius exceeds
30 minutes, since larger θi’s radiuses are associated to larger costs by the θC com-
ponent, which contributes to reduce the social welfare improvement. In addition,
Figure 6.12 also shows that the hard peak distribution provides the highest so-
cial welfare improvement (8.79%) with respect to the soft peak (6.62%) and the
uniform (3.62%) ones. In fact, if the departure times of more agents are concen-
trated in a shorter time period, the cost provided by the θC component is lower.
Moreover, SR-CFSS can evaluate a larger amount of feasible solutions, since less
time infeasible coalition structures have to be discarded. Finally, these results show
that the introduction of time constraints leads to a reduction of the social welfare
improvement, which is a consequence of the additional costs and, more important,
a reduced solution space, as further confirmed by the experiments in Section 6.4.4.

We further investigate the above discussed experiment by studying the effect on
the social welfare improvement of increasing the θi’s radiuses only of a particular
class of commuters. By doing so, we aim at identifying which classes are more
sensitive to the variation of such parameter in terms of overall cost reduction.
Specifically, we observe 3 interesting classes of agents, i.e., drivers, riders, and
hubs (i.e., agents whose connectivity in the social graph is significantly above
the average), and we vary the θi’s radius within [15′, 60′] only for the considered
class, while setting such parameter equal to 15′ for the other classes. Figure 6.13
shows that the social welfare improvement has the biggest increase for the drivers
(+6.28%), reaching a final maximum of 14.24%. Such increase is slightly lower for
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hubs (+5.1%), while it is only +1.27% for riders. These results prove the significant
impact of a larger θi’s radius for drivers and hubs, which results in a larger number
of potential coalitions, and, consequently, a larger social welfare improvement.
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Fig. 6.12: Social welfare improvement with respect to θi’s radius.
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Fig. 6.13: Social welfare improvement with respect to θi’s radius.
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Fig. 6.14: Runtime without time constraints.

6.4.3 Runtime performance without time constraints

In this section we discuss the performance of our approach in terms of runtime
needed to compute the optimal solution of a SR problem without time constraints.
Figure 6.14 shows the runtime with respect to the number of agents adopting our
SR model without time constraints. Our approach is tested in 3 scenarios, i.e., with
low (10%), medium (50%) and high (80%) percentage of drivers, showing that this
parameter has a significant influence on the performance of our algorithm. In fact,
the size of the search space is determined by the number of available seats (reduced
when such a percentage is low) and the number of riders without a car who can
benefit from sharing their commutes (reduced when the majority of the agents
owns a car), consistently with the behaviour of the social welfare improvement
detailed in the previous section. Notice that, in any case, our approach can solve
systems with 100 agents in a reasonable amount of time, i.e., about 2 hours at
most for |D| = 50%. This runtime is suitable for services with day-ahead or week-
ahead requests (e.g., Lyft). Such a performance is possible thanks to our bounding
techniques (see Section 6.2.1), which allow to prune a significant part of the search
space. In more detail, such techniques allow an average pruning of the 97.5% of
the search space (resulting in an average runtime improvement of about 4 hours)
on 20 random instances with n = 60 and |D| = 50%.

6.4.4 Runtime performance with time constraints

When we consider time constraints (Figure 6.15), we notice a significant perfor-
mance improvement of SR-CFSS, which can compute the optimal solution for 100
agents in 30 seconds, i.e., over two orders of magnitude faster than the above case.
This increased performance also results in an increased scalability, as SR-CFSS can
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Fig. 6.15: Runtime with time constraints.
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Fig. 6.16: Runtime with respect to θi’s radius.

solve systems with 150 agents, i.e., 50 additional agents with respect to 100 agents
in the previous experiment, in the same amount of time, and 200 in less than a day.
We further investigate the impact of time constraints on the performance of SR-
CFSS by varying the θi’s radius, as discussed in Section 6.4.2. Figure 6.16 shows
that larger radiuses correspond to harder SR problems. As an example, instances
with a θi’s radius equal to 15 minutes are solved by SR-CFSS more than two orders
of magnitude faster with respect to when we consider 45 minutes. As discussed in
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Section 6.4.2, larger radiuses correspond to a larger number of feasible solutions,
since less time infeasible coalition structures have to be discarded. These results
further confirm the significant impact of time constraints on the dimension of the
solution space, which results in a twofold consequence. On the one hand, scenarios
with time constraints are easier to solve, since the amount of feasible solutions is
lower. On the other hand, the reduced amount of possible solutions allows a lower
social welfare improvement in such scenarios (see Section 6.4.2).

6.4.5 Approximate performance

Here we benchmark the performance of our SR-CFSS on large-scale systems with
thousands of agents. We adopt the same methodology discussed in Section 5.4.4,
i.e., we study the maximum performance ratio (see Definition 5.6) as a measure
of the quality guarantees of the approximate solution computed by our approach.
Specifically, we run SR-CFSS on instances adopting the model without time con-
straints with n ∈ {500, 1000, 2000} and we stop the execution after a time budget
of 100 seconds. Then, we compute Bound (I) with the method in Section 4.4.2 by
applying the upper bounds defined in Theorems 6.10 and 6.18.

Figure 6.17 shows that, on average, Bound (I) is only 6.65% higher than
Approx (I) (i.e., the solution found within the time limit) for n = 500 and
|D| = 80%, reaching a maximum of +29.92% when n = 2000 and |D| = 50%.
In the worst case, SR-CFSS provides a maximum performance ratio of 1.41 and
thus solutions whose values are at least 71% of the optimal. We obtained very sim-
ilar results also when we consider time constraints, and hence, we do not report
them here. Such a behaviour is reasonable since the maximum performance ratio
is heavily influenced by the value of Bound (I) and, as detailed in Section 6.3.3,
we apply the same technique whether or not we consider time constraints.
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Fig. 6.17: Maximum performance ratio of approximate solutions.
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6.4.6 SR-CFSS vs. C-Link: solution quality comparison

In our final experiment we further evaluate the approximate performance of SR-
CFSS by comparing it against C-Link [44]. Specifically, we generate random SR
instances with n ∈ {1000, 1200, . . . , 2000}, considering 20 repetitions for each n.
Then, following Section 5.4.5, we solve each instance with C-Link (adopting the
best heuristic proposed by Farinelli et al. [44], i.e., Gain-Link) and then we run
SR-CFSS on the same instance with a time budget equal to C-Link’s runtime.

Figure 6.18 shows the average and the standard error of the mean of the ratio
between the value of the solution computed by C-Link and the one computed by
SR-CFSS. Since we consider solutions with negative values, when such ratio is
> 1 the solution computed by C-Link is better (i.e., corresponds to a lower cost)
than the one computed by SR-CFSS. Our results show that, for n < 1600, the
quality of C-Link’s solutions is better than SR-CFSS. Then, for n ≥ 1600 SR-
CFSS outperforms C-Link in terms of solution quality. In particular, for n = 2000
the solutions provided by our approach correspond to costs that are, on average,
2.28× lower than the counterpart ones.

This behaviour is in contrast with the results obtained in the collective energy
purchasing scenario, in which C-Link performed slightly better than CFSS even
on the largest instances (see Section 5.4.5). This difference is due to the additional
constraints (i.e., Constraint 1 and, optionally, Constraint 2) inherent in the SR
scenario with respect to the collective energy purchasing one. Since C-Link is a
greedy approach, the myopic choices in the first stages of the algorithm often
lead to solutions of poor quality, since the constraints greatly restrict the number
of alternative options. Moreover, such choices cannot be recovered, since C-Link
does not involve any form of backtracking. In contrast, SR-CFSS can backtrack
and hence, it can explore more options, leading to solutions of better quality.
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7

Payments for Social Ridesharing

In Chapter 6 we discussed the SR scenario, and, in particular, we showed how to
model it as a GCCF problem in order to solve the associated optimisation problem,
i.e., the CSG problem. In this chapter, we tackle the second fundamental aspect
of CF, i.e., payment computation (see Section 2.1.3).

Such a task represents a key challenge in the CF process and it is of utmost
importance when offering ridesharing services, especially when considering com-
muters with rational behaviours. In fact, payoffs (corresponding to cash payments
for sharing trip costs) to the commuters need to be computed given their distinct
needs (e.g., shorter/longer trips), roles (e.g., drivers/riders, less/more socially con-
nected) and opportunity costs (e.g., taking a bus, their car, or a taxi).

One key aspect of payment distribution in CF is the game-theoretic concept of
stability, which measures how agents are keen to maintain the provided payments
instead of deviating to a configuration deemed to be more rewarding from their
individual point of view. Here, we induce stable payments in the context of the
SR problem, employing the kernel [31] stability concept. Kernel-stable payoffs are
perceived as fair, since they ensure that agents do not feel compelled to claim part
of their partners payoff. Kernel stability has been widely studied in cooperative
game theory, and various approaches have been proposed to compute kernel-stable
payments [65, 103]. Specifically, Shehory and Kraus [103] adopt a transfer scheme
that represents the state of the art approach to compute kernel-stable payments.

7.1 State of the art approach

As introduced in Section 3.3, Algorithm 6 has been designed to compute payments
for CF scenarios in which the set of coalitions is not restricted by a graph. Such
an approach can be readily applied also when the size of coalitions is limited to k
members, as it happens in a SR scenario in which all cars have k seats.1

Definition 7.1 (k-CF). A CF problem is said to be a k-CF problem if the size of
coalitions is limited to k members.

1 In real-world scenarios it is reasonable to assume that a car has 5 seats [120].
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Algorithm 6 ShehoryKrausKernel(x,CS, ε)

1: repeat
2: for all S ∈ CS do
3: for all ai ∈ S do
4: for all aj ∈ S − {ai} do
5: sij ← max{S′∈2A | ai∈S′,aj 6∈S′} e (S′, x)

6: {ai∗ and aj∗ have the maximum surplus difference δ}
7: δ ← max(ai,aj)∈A2 (sij − sji)
8: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)
9: if x[j∗]− v ({aj∗}) < δ/2 then {Payments are individually rational}

10: d← x[j∗]− v ({aj∗})
11: else
12: d← δ/2

13: x[j∗]← x[j∗]− d {Transfer payment from aj∗ ...}
14: x[i∗]← x[i∗] + d {... to ai∗}
15: until δ/V (CS) ≤ ε

In k-CF, the maximisation at line 5 has to be assessed among the coalitions of
size up to k which include ai but exclude aj . This set, denoted as R, can be easily
obtained as R = {{ai} ∪ S | S is a h-combination of A−{ai, aj},∀h ∈ {1, . . . , k−
1}}. Unfortunately, in GCCF scenarios like SR this simple approach would iterate
over several unfeasible coalitions (i.e., which do not induce a connected subgraph
of the social network), leading to inefficiency and reducing the scalability of the
entire algorithm. In contrast, a better way to tackle this problem is to exploit
the structure of the graph in order to consider only the coalitions that are indeed
feasible, so to avoid any unnecessary computation.

Moreover, Algorithm 6 considers many coalitions more than once at the max-
imisation in the loop at lines 2–7. We provide the following example to clarify
why this redundancy exists. Consider the set of agent A = D = {a1, a2, a3, a4}
and the graph G shown in Figure 7.1. Such graph induces the set of feasible
coalitions FC (G) = {{a1}, {a2}, {a3}, {a4}, {a1, a2}, {a1, a3}, {a1, a4}, {a1, a2,
a3}, {a1, a2, a4}, {a1, a3, a4}, {a1, a2, a3, a4}}, and assume a coalition structure
CS = {{a1, a2, a3, a4}}.

a1 a2

a3 a4

Fig. 7.1: Example of a social network with 4 agents.
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ai aj Coalitions

a1 a2 {a1} {a1, a3} {a1, a4} {a1, a3, a4}
a1 a3 {a1} {a1, a2} {a1, a4} {a1, a2, a4}
a1 a4 {a1} {a1, a2} {a1, a3} {a1, a2, a3}
a2 a1 {a2}
a2 a3 {a2} {a1, a2} {a1, a2, a4}
a2 a4 {a2} {a1, a2} {a1, a2, a3}
a3 a1 {a3}
a3 a2 {a3} {a1, a3} {a1, a3, a4}
a3 a4 {a3} {a1, a3} {a1, a2, a3}
a4 a1 {a4}
a4 a2 {a4} {a1, a4} {a1, a3, a4}
a4 a3 {a4} {a1, a4} {a1, a2, a4}

Table 7.1: Coalitions computed by the loop at lines 2–7 of Algorithm 6.

In this case, such a loop requires 12 iterations, each looking at the coalitions
reported in Table 7.1. Note that 23 (marked in bold) out of 33 coalitions (i.e.,
70%) are evaluated more than once. This fact substantially reduces the efficiency
and the scalability of the algorithm in SR scenarios, where the computation cost
required to assess coalitional values is not negligible and caching is not an option.
In fact, storing all these values in memory is not affordable even for systems with
hundreds of agents: since FC (G) can contain up to O

(
nk
)

coalitions, for k = 5 and
n = 100, storing all coalitional values requires tens of GB of memory. Thus, each
coalitional value must be computed only when needed, since computing them more
than once significantly reduces efficiency and scalability, as shown in Section 7.3.2.

To overcome these issues, in the next section we present the PK algorithm, our
payment scheme that scales up to systems with thousands of agents.

7.2 The PK algorithm

We now present the PK (Payments in the Kernel) algorithm [13, 19], our method
to compute an ε-kernel payoff allocation, given a coalition structure CS that is
a solution to the SR problem.2 Our contribution improves on the k-CF version
of Algorithm 6 by adopting a novel approach to calculate the surplus matrix s.
Instead of computing each value sij using the maximisation at line 7 for each pair
of agents in each S ∈ CS, we iterate over the set of feasible coalitions (as specified
in Definition 6.3) induced by G, and we update the appropriate values of the
surplus matrix for each of such coalitions. Specifically, this is achieved by iterating
over the set of k̂-subgraphs of G, i.e., the set of connected subgraphs of G with
at most k nodes, and then executing the update by means of the UpdateMax
routine only for those k̂-subgraphs that actually correspond to feasible coalitions.
This additional check is mandatory since not all k̂-subgraphs necessarily satisfy
Constraint 1, and hence, represent feasible coalitions. By so doing, we ensure the
exact coverage of FC (G), as proved by Proposition 7.3.

2 While we present our contribution in the context of SR, our approach can be applied
to all k-CF scenarios.
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Algorithm 14 PK(CS, ε)

1: for all S ∈ CS do
2: for all ai ∈ S do
3: xi ← v(S)/|S| {Equally split coalitional value}
4: repeat
5: {Compute surplus matrix}
6: s← ComputeMatrix (CS, x)
7: {ai∗ and aj∗ have the maximum surplus difference δ}
8: δ ← max(ai,aj)∈A2 (sij − sji)
9: (ai∗ , aj∗)← arg max(ai,aj)∈A2 (sij − sji)

10: {Ensure that payments are individually rational}
11: if x[j∗]− v ({aj∗}) < δ/2 then
12: d← x[j∗]− v ({aj∗})
13: else
14: d← δ/2

15: x[j∗]← x[j∗]− d {Transfer payment from aj∗ ...}
16: x[i∗]← x[i∗] + d {... to ai∗}
17: until δ/v(CS) ≤ ε

PK is detailed in Algorithm 14. After having initialised the payoff vector x by
equally splitting each coalitional value among the members of the coalition, Com-
puteMatrix computes the surplus matrix in each iteration of the main loop.
In such a routine, UpdateMax is executed for each coalition that induces a k̂-
subgraph of G. These coalitions are computed with the SlyCE algorithm [117],
which can list all the subgraphs of a given graph without redundancy (i.e., each
subgraph is computed only once). Then, UpdateMax only considers the coali-
tions that satisfy Constraint 1 of the SR problem (line 1). For every S of such
coalitions, lines 3–8 update all the values sij for which ai is a member of S and aj
is part of S′ (i.e., the coalition in CS that contains ai) but is not part of S. The
correctness of our approach is ensured by Proposition 7.2.

Proposition 7.2. Algorithm 15 computes each sij correctly.

Proof. Once the loop has ended, each sij stores the maximum excess among all
feasible coalitions with ai but without aj , with both ai and aj part of the same
coalition in CS. This matches line 7 of Algorithm 6. ut

Our surplus matrix-calculating method has polynomial time complexity, while
allowing to compute all feasible coalitions only once, as shown by Proposition 7.3.

Algorithm 15 ComputeMatrix(CS, x)

1: s← −∞ {Initialise the entire matrix with −∞}
2: for all S that induce a k̂-subgraph of G do
3: s← UpdateMax (S,CS, s, x)

4: return s
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Algorithm 16 UpdateMax(S,CS, s, x)

1: if S satisfies Constraint 1 then
2: eS ← e (S, x) {Compute the excess of coalition S}
3: for all ai ∈ S do {For each agent ai in coalition S}
4: S′ ← the coalition in CS that contains ai
5: for all aj ∈ S′ − S do {For each aj ∈ S′ but 6∈ S}
6: {sij is updated with the maximum between}
7: {its old value and the excess of coalition S}
8: sij ← max (sij , eS)

9: return s

Proposition 7.3. Algorithm 15 lists all feasible coalitions only once and it has a
worst-case time complexity of O

(
nk
)
.

Proof. Algorithm 15 lists all k̂-subgraph of G exactly once [117]. Note that the

number of k̂-subgraphs is O
(
nk
)
, since we only consider coalitions with up to k

members [103]. Hence, Algorithm 15 makes at most O
(
nk
)

calls to UpdateMax.
Finally, note that the time complexity of UpdateMax is constant with respect
to n, since computing e (S, x) requires the computation of v (S) (which has con-
stant time complexity [20]), and the loop at lines 3–8 requires O

(
k2
)

iterations.
Moreover, UpdateMax only considers coalitions that satisfy Constraint 1 (whose
check is constant with respect to n) and it computes each coalitional value only
once at line 2. Thus, Algorithm 15 computes all feasible coalitions only once and
its worst-case time complexity is O

(
nk
)
. ut

In the next proposition, we prove that PK has a polynomial time complexity.

Proposition 7.4. Algorithm 14 has a polynomial worst-case time complexity with
respect to n, i.e., O

(
− log2 (ε) · nk+1

)
.

Proof. Here we refer to equations and lemmas provided by Stearns [108]. Each
iteration of Algorithm 14 identifies the agents ai and aj with the maximum surplus
difference δ = sij − sij , performing a transfer of size d from aj to ai. Thus, by
Lemma 1 [108], in the following iteration these surpluses will be s′ij = sij − d
and s′ji = sji + d. Notice that s′ij − s′ji = sij − sji − 2 · d = δ − 2 · d. Now,
by definition of d (lines 11–14 of Algorithm 14), d ≤ δ/2, hence s′ij − s′ji ≥ 0.
Therefore, we can affirm that the transfer from aj to ai is indeed a K-transfer, since
it satisfies Equation 4, 5, 6 and 7 [108]. Lemma 2 [108] ensures the convergence of
Algorithm 2, by affirming that a K-transfer cannot increase the larger surpluses in
the system. Specifically, in the next iteration the difference between the surpluses
between aj to ai will be half of what was in the previous one. After λ iterations,
its value will be 1

2λ
of the original one. Thus, it will take λ = log2([δ0/v(CS)]/ε)

iterations to ensure that [δ0/v(CS)]/2λ ≤ ε, with δ0 being the original maximum sij
surplus. Since we have n agents into the setting, it will take λ·n = O (− log2 (ε) · n)
iterations to convergence. Then, we know by Proposition 2 that ComputeMatrix,
which dominates the time complexity of each iteration, has a worst-case time
complexity of O

(
nk
)
. Given this, Algorithm 2 has a worst-case time complexity

of O
(
− log2 (ε) · nk+1

)
. ut
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Given this, PK provides a polynomial method to compute kernel-stable payments.
Nonetheless, the O

(
nk
)

operations required for surplus matrix calculation may
not be affordable in real-world scenarios with thousands of agents and k = 5 (i.e.,
the number of seats of an average sized car). Hence, we next propose a parallel
version of PK, which allows us to distribute the computational burden among
different threads, taking advantage of modern multi-core hardware.

7.2.1 P-PK

We now detail P-PK, the parallel version of our approach, in which the most
computation-intensive task, i.e., the computation of the matrix s, is distributed
among T available threads. In particular, Algorithm 17 details our parallel version
of the ComputeMatrix routine, obtained by having each thread t to compute
a separate matrix st. Such a matrix is constructed considering the coalitions in
DIV (G, t, k), i.e., the tth fraction of the set of all k̂-subgraphs ofG, computed using
the D-SlyCE algorithm [117].3 Specifically, this fraction is obtained by splitting
the first generation of children nodes in the search tree generated by the SlyCE
algorithm [117] among the available threads, allowing a fair division of the set of

the k̂-subgraphs while ensuring that all feasible coalitions are computed exactly
once. As such, it also distributes the computation of the coalitional values.

Algorithm 17 P-ComputeMatrix(CS, x, T )

1: s← −∞ {Initialise all matrix elements with −∞}
2: for all t ∈ {1, . . . , T} do in parallel
3: for all S ∈ DIV (G, t, k) do
4: st ← UpdateMax (S,CS, st, x)

5: for all i ∈ {1, . . . , n} do in parallel
6: for all j ∈ {1, . . . , n} do in parallel
7: sij ← maxt∈{1,...,T} s

t
ij

8: return s

We provide the following example to clarify how this division is realised. Consider
the same FC (G) of the example in Section 7.1, and assume T = 4. Then, the
necessary coalitions are distributed by doing the following partitioning:

1. DIV (G, 1, k) = {{a1}, {a2}, {a3}}
2. DIV (G, 2, k) = {{a4}, {a1, a2}, {a1, a3}}
3. DIV (G, 3, k) = {{a1, a4}, {a1, a2, a3}}
4. DIV (G, 4, k) = {{a1, a2, a4}, {a1, a3, a4}}

Note that, since each matrix st is modified only by thread t,4 Algorithm 17 contains
only one synchronisation point (i.e., before line 5), hence providing a full paralleli-

3 Notice that nor SlyCE neither D-SlyCE solve the payment computation problem, as
they address the enumeration of the k̂-subgraphs of G.

4 P-PK requires storing t separate surplus matrices, one per thread. Hence, its memory
requirements are O

(
t · n2

)
, i.e., still polynomial in the number of agents.
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sation. After that, the final surplus matrix s is computed with a maximisation on
all the above matrices (lines 5–7), ensuring that the output of P-ComputeMatrix
is equal to the one of ComputeMatrix, since each feasible coalition in FC (G)
has been computed by a thread. The effectiveness of our parallel approach will be
demonstrated through the empirical evaluation, detailed in the following section.

7.3 Empirical evaluation

The main goals of the empirical analysis on real-world datasets are:

1. To test the performance of PK when computing payments for systems of thou-
sands of agents.

2. To perform an analysis of the features that influence the distribution of pay-
ments among the agents.

3. To investigate the impact of time constraints on the above properties.
4. To compare the efficiency of PK with respect to the state of the art approach

proposed by Shehory and Kraus.
5. To estimate the speed-up obtainable by using P-PK with respect to PK.

In all our tests, we adopt the same methodology and datasets discussed in Sec-
tion 6.4 (i.e., we adopt the GeoLife and Twitter datasets), unless otherwise stated.
In the experiments looking at the performance of PK (i.e., Sections 7.3.1, 7.3.2
and 7.3.3) we only consider the SR model without time constraints, since the
performance of PK is negligibly affected by them.5 PK is implemented in C.6

7.3.1 Runtime performance

In our first experiment, we aim at evaluating the performance of our approach
when computing payments in large-scale instances. Figure 7.2 shows the runtime
needed to execute P-PK on systems with n ∈ {100, 500, 1000, 1500, 2000}. In each
test, the coalition structure has been computed using the approximate version of
SR-CFSS using our SR model without time constraints.

Our results show that P-PK is able to compute payments for 2000 agents with
a runtime ranging from 13 to 50 minutes, hence it can successfully scale to large
systems. In particular, for each value of n, we consider |D| ∈ {10%, 50%, 80%}.
Our results also show the influence of the percentage of drivers on the complexity
of the problem. On average, computing payments on an instance with |D| = 80%
is easier with respect to |D| = 10% and |D| = 50%. Our findings are consistent
with the results in Section 6.4.1, showing that the scenario with |D| = 50% is more
difficult to solve since more drivers are available, hence it is possible to form more
cars, resulting in a larger search space. In fact, the number of feasible coalitions
is determined by the number of available seats (reduced when such a percentage
is low) and the number of riders without a car who can benefit from sharing their
commutes (reduced when the majority of the agents owns a car).

5 The complexity of computing each coalitional value is comparable whether or not we
consider time constraints.

6 Our implementation is available at https://github.com/filippobistaffa/PK.

https://github.com/filippobistaffa/PK
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Fig. 7.2: Runtime needed to compute payments.

7.3.2 Comparison with the state of the art

Figure 7.3 shows the runtime needed by our approach to compute a kernel-stable
payoff vector, comparing it with the state of the art approach by Shehory and
Kraus [103], i.e., Algorithm 6. In particular, we consider the runtime needed to
solve SR instances with n ∈ {30, 40, 50, 60, 70, 80, 90, 100} and |D| = 50%. We
employ the sequential version of PK, since Algorithm 6 is also sequential.

30 40 50 60 70 80 90 100
10−2

10−1

100

101

102

103

Number of agents

E
x
ec

u
ti

on
ti

m
e

(s
)

PK
Shehory and Kraus

Fig. 7.3: Runtime needed to compute payments.
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Our results show that PK is at least one order of magnitude faster than the
counterpart approach, outperforming the state of the art by 27× in the worst case,
with an average improvement of 53×, and a best case improvement of 84×. Thus,
our comparison has been run only up to n = 100, since the counterpart approach
becomes impractical for instances with thousands of agents. In fact, with 1000
agents it requires over one day of computation, compared to a runtime of 2 hours
required by PK, and 14 minutes required by P-PK. In particular, the approach
by Shehory and Kraus is slower since it makes several redundant computations of
many coalitional values, resulting in a significant impact on its runtime.

7.3.3 Parallel performance

Here we analyse the speed-up that can be achieved by using P-PK with respect
to PK, i.e., its sequential version. We ran the algorithms on instances with 500
agents and |D| = 50%, using a machine with 2 Intel R© Xeon R© E5-2420.
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Fig. 7.4: Multi-threading speed-up.

The speed-up measured during these tests has been compared with the maxi-
mum theoretical one provided by the Amdahl’s Law [3], considering an estimated
non-parallelisable part of 1%, due to memory allocation and thread initialisation.
Figure 7.4 shows that the actual speed-up follows the theoretical one for up to
12 threads (i.e., the number of physical cores for this machine), reaching a final
speed-up of 14.85× with all 24 threads active.
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7.3.4 Costs and network centrality without time constraints

The purpose of this section is to analyse the relationship between the cost incurred
by a commuter and its importance in the environment, i.e., being a node with a
high degree in the social network, or being driver or rider. To this end, we first
compute the optimal solution of a SR problem without time constraints on random
instances with n ∈ {30, 40, 50, 60, 70, 80, 90, 100} and |D| ∈ {10%, 50%, 80%}, and
we use our algorithm to compute a kernel-stable payoff vector. Then, to assess
this correlation in a quantified manner, we define the normalised cost ci and the
normalised degree di for each agent ai as follows:

• For any ai in a coalition S with |S| > 1, we define its normalised cost ci as

ci =
−x[i]−minSx
maxSx −minSx

,

where minSx and maxSx are the minimum and the maximum values of the neg-
ative values of x among the members of S, i.e., minSx = minai∈S −x[i] and
maxSx = maxai∈S −x[i]. Note that we consider negative values since in our
model, costs are represented by negative values for x[i].

• For any ai in a coalition S with |S| > 1, we define its normalised degree di as

di =
deg (ai)−minSd
maxSd −minSd

,

where deg (ai) represents the degree of ai in the social network, and minSd and
maxSd are the minimum and the maximum degrees among the members of S.

When the denominator of ci is 0, i.e, when maxSx = minSx , it means that all the
agents in C have the same payoff. In these cases, ci is defined to be 0.5 as a middle
point between 0 and 1 (the same discussion applies to di).

Notice that, a direct comparison of two agents that are not part of the same
coalition would not be appropriate for determining their overall power or benefits
derived from participation in the SR setting, since payments computed accord-
ing to the kernel do not consider agents belonging to different coalitions (see Sec-
tion 2.1.4). Nonetheless, it would definitely be interesting to have a way to measure
and compare the power of the agents, regardless of the coalition to which each one
belongs. To allow this comparison, both ci and di are normalised between 0 (for the
agents having the minimum costs/degrees in their coalitions) and 1 (similarly for
the agents with maximum costs/degrees). The normalisation is done with respect
to the coalition the agent belongs to, because to reach kernel-stability, payment
transfers only take place among agents within the same coalition. Finally, note
that agents in singletons have been excluded from this analysis, as they do not
have to split their coalitional value.

In Figure 7.5 we report the average and the standard error of the mean for the
normalised cost with respect to the normalised degree. Our results clearly show
that costs are strongly influenced by the degree of the agents, and whether they
are drivers or riders. Specifically, in our tests drivers had to pay costs that were
on average 16% lower than riders. Moreover, agents with the minimum number
of social connections in their coalition (i.e., with a normalised degree of 0) paid a
cost 171% higher than the ones with the highest degree.
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Fig. 7.5: Normalised cost w.r.t. normalised degree without time constraints.

7.3.5 Costs and network centrality with time constraints

In this section we investigate how the same features of the cost distributions studied
in the previous section are affected by the introduction of time constraints. To this
end, we repeat the above experiment using our SR model with time constraints.
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Fig. 7.6: Normalised cost with respect to normalised degree with time constraints.
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Figure 7.6 shows a behaviour similar to the one discussed in the above section.
Moreover, we notice that the introduction of time constraints results in signifi-
cantly lower costs for the drivers (i.e., drivers pay costs that are on average 35%
lower than the previous experiment), while riders’ costs are comparable in both
scenarios. These results can be explained by recalling that time constraints sig-
nificantly reduce the solution space (see Sections 6.4.2 and 6.4.4), and hence, the
influence of drivers (who are crucial to determine whether or not a coalition can
be formed) is even stronger if the pool of possible alternative coalitions is smaller.

We further investigate the role of time constraints in the payment distribution
process by studying to what extent more tolerant agents are rewarded with lower
costs. To this end, we assign a random θi’s radius within {5′, 10′, 15′, 20′, 25′, 30′}
to each agent and we look at the corresponding normalised cost.
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Fig. 7.7: Normalised cost with respect to θi’s radius

Figure 7.7 shows that the agents that are willing to tolerate more with respect to
their ideal departure/leaving time are rewarded by the system with lower costs,
as a consequence of the fact that, by having a larger θi’s radius, they can choose
among a larger pool of alternatives and hence, they achieve a higher bargaining
power in the payment distribution process.

In general, our experimental results suggest that the kernel can be a valid
stability concept in the context of SR. In fact, it induces a reasonable behaviour
in the formation of groups, which can be directly correlated with some simple
properties of the agents in the system (i.e., network centrality and being a driver
or a rider). Moreover, the computation of kernel-stable payments has a tractable
complexity and hence, it is suitable for large-scale environments, in contrast with
stronger stability concepts (e.g., the core).
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CUBE: a CUDA implementation for Bucket
Elimination

The main objective of this thesis is the study and the design of novel computational
methods to solve combinatorial optimisation problems (such as GCCF), in Multi-
Agent Systems. The techniques discussed so far perform particularly well under
the assumption that the value of each coalition can be expressed by means of a
closed-form function, and it is possible to derive a method to compute an upper
bound for such function to apply CFSS (see Sections 4.4 and 6.2). However, in
some GCCF scenarios it may be difficult (or not possible at all) to meet these
premises, hence the application of CFSS may be not convenient. As an example,
in the context of ridesharing, coalitional values may be characterised by a random
component expressing the costs due to traffic.

Against this background, in the remainder of the thesis we investigate an alter-
native solution method for GCCF that is applicable in scenarios where CFSS is not
a viable approach. In the optimisation literature, Dynamic Programming (DP) [30]
historically represents the counterpart approach with respect to search, especially
in the context of GCCF [92, 117]. Moreover, DP-based algorithms represent the
state of the art for solving CSG [91] and GCCF [117] in scenarios that consider
a general characteristic function. Such facts warrant the study of an approach for
GCCF based on DP, with the objective of developing a high-performance solution
method that overcomes the drawbacks of previously discussed algorithms.

In recent years, Graphics Processing Units (GPUs) have been successfully used
to speed-up the computation in different applications that feature a high level
of parallelism, achieving performance improvements of several orders of magni-
tude [43] in fields including computer vision [8], human-computer interaction [11],
and artificial intelligence [87, 110]. Parallelisation has also been investigated to
speed-up search-based approaches on multi-core CPUs [85], but the application of
these techniques to GPUs is difficult for several reasons. On the one hand, general
Depth-First Search (DFS) is known to be difficult to parallelise [94],1 especially on
highly parallel architectures such as GPUs. Moreover, the use of branch and bound
strategies to guide the search may result in heavily unbalanced search trees, re-
quiring complex techniques to balance the workload among the threads [85]. Such

1 Even if Reif [94] focuses on the problem of enumerating the nodes of a graph adopting
DFS, the same negative result also applies when DFS is used in an optimisation context
to traverse a search tree.
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techniques are not effective on GPUs, where load balancing is crucial to achieve a
high computational throughput. For these reasons, the solutions proposed in the
previous chapters would be ineffective if implemented on GPUs, since our main
result, i.e., the CFSS algorithm, is a branch and bound DFS algorithm.

On the other hand, DP has been successfully parallelised on GPUs [22, 46,
56, 87, 109], motivating the study of a new research line in this direction. In the
remainder of the thesis we discuss how to benefit from the computing capabilities
of GPUs for AI problems, and, specifically, for GCCF. We achieve this objective
by exploiting the close relation between such a problem and Constraint Optimi-
sation Problems (COPs) (see Section 2.2), proposing a novel formalisation for
GCCF based on a COP (see Chapter 9). Specifically, in this chapter we propose
CUBE (CUda Bucket Elimination) [15, 17], a highly parallel implementation for
the join sum and maximisation operations associated to Bucket Elimination (BE),
which we use to solve COPs as discussed in Section 2.3. CUBE employs a novel
methodology for the parallelisation of such operations, which is specifically de-
signed to consider two fundamental aspects of the GPU algorithmic design, i.e.,
thread independence and memory management, as discussed in Section 2.5.

In the design of CUBE, we aim at developing a high-performance GPU frame-
work that allows us to deal with the computational effort inherent in the message
passing phase of several BE-based algorithms. To this end, our main objective is to
devise a solution that fulfils three key requirements. First, since BE is a general al-
gorithm that can be applied to several problems, our framework should be likewise
general to allow a wide adoption among different domains. Second, our approach
should be able to achieve a high computational throughput, by means of optimised
memory accesses to avoid bandwidth bottlenecks, a careful load-balancing to fully
exploit the available computational power, and the adoption of well-known paral-
lel primitives [98, 102] to reduce the CPU workload to the minimum. Third, our
solution should not be limited by the amount of GPU memory (see Section 2.5.1).

CUBE achieves the objectives set above by means of a novel preprocessing
algorithm that reorders the rows and the columns of the tables representing the
constraints of the COP (see Section 2.2) so to achieve optimised memory accesses.
Such an arrangement enables pipelined data transfers (see Section 2.5.2), hence
optimising the transfer time, and it allows the use of highly efficient routines for the
fundamental parts of BE, i.e., composition (see Section 2.3.1) and marginalisation
(see Section 2.3.2). CUBE is not limited by the amount of GPU memory, as our
data layout allows us to process large tables by splitting them into manageable
chunks that meet the memory capabilities of the GPU.

Now, the capability of each thread to efficiently access its input data is a
crucial aspect in the design of GPU algorithms [43], as it directly determines the
final computational throughput. Within CUBE, we avoid unnecessary, expensive
memory accesses by proposing a technique that allows threads to locate their
input data only on the base of their own ID. We take advantage of the data
reuse pattern inherent in the composition and the marginalisation operations by
caching the input data in the shared memory, i.e., the fastest form of memory in
the GPU hierarchy [43] (see Section 2.5.1). Bandwidth efficiency is also ensured by
the high spatial locality inherent in our data representation, as discussed in detail
in Section 8.3.
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Unlike previous approaches [122], CUBE does not require input tables to be
complete (i.e., to contain all the rows corresponding to every possible assignment of
the variables in the table scope), as it is designed to exploit the structure of tables
with missing rows inherent in COPs (see Section 8.2). Nonetheless, we also provide
a specialised version of our method that can take advantage of the completeness of
tables and that can be used in scenarios where such tables contain all the possible
assignments (e.g., belief propagation on junction trees or COPs in which unfeasible
assignments are explicitly represented with −∞ values). Such method is discussed
in the following section.

8.1 Processing complete tables

In this section, we describe how we preprocess complete tables in order to index
their rows efficiently and achieve coalesced memory accesses. Specifically, we first
discuss our approach in the context of Belief Propagation (BP), showing how
we exploit this table layout within the GPU kernel executing the actual message
passing phase of BP through highly efficient routines [18]. Then, in Section 8.1.3
we show how to adapt such method in the context of COPs.

8.1.1 Table preprocessing

Suppose we have to employ the BP algorithm as discussed in Section 2.4 in order
to propagate new evidence from the potential table T1 to the potential table T2,
respectively associated to two tuples of variables Q1 = 〈x3, x2, x1〉 and Q2 =
〈x5, x4, x1〉, with the shared variables Q12 = Q1 ∩ Q2 = 〈x1〉 (Figure 8.1). We
assume that x1, x3 and x5 are binary variables, while x2 and x4 can assume 3
values. In the approach by Zheng and Mengshoel [122], each row of the separator
table Sep12 is assigned to a different block of threads, which are responsible for
the reduction of the rows of T1 with a matching variable assignment and the
subsequent scattering on matching rows in T2. In Figure 8.2, rows associated to
different blocks of threads have been marked in different colours, i.e., white and
grey for x1 = 0 and x1 = 1 respectively. The organisation of input data provided
by these tables is undesirable for GPU architectures. In fact, threads responsible
for the computation of white rows cannot access consecutive memory addresses,
as their data is interleaved with grey rows, thus breaking memory coalescence.
Moreover, even if the computation of white rows requires half of the input data,
its sparsity forces us to transfer the entire tables to the global memory before
starting the algorithm.

〈x5, x4, x1〉〈x3, x2, x1〉
N2N1

〈x1〉

Fig. 8.1: Junction tree example.
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We propose to solve these issues by means of a preprocessing phase, in which rows
associated to the same row in Sep12 (i.e., rows of the same colour, in the above
example) are stored in consecutive addresses in the corresponding potential tables,
as shown in Figure 8.3. Threads responsible for white rows execute coalesced mem-
ory accesses, and start the computation while grey rows are still being transferred
to the GPU. Each block of threads easily retrieves its input data, in contrast with
the approach by Zheng and Mengshoel [122] that adopts costly mapping tables
resulting in a higher memory footprint.

Consider T p1 = 〈Qp1, d
p
1, R

p
1, φ

p
1〉 in Figure 8.3, resulting from a permutation

σ of Q1 in which all the shared variables (i.e., Q12 = 〈x1〉) are brought to the
Most Significant2 (MS) positions in Qp = σ (Q). In this way, we can assure that
rows with the same assignment of the variables in Q12 form a contiguous chunk of
memory. Our table representation by means of ordered tuples imposes that dp, Rp

and φp are coherently defined, to guarantee the equivalence to the original table.
While the former can be easily obtained by applying σ to d, the computation of Rp

can be avoided, therefore only φp requires a particular discussion, which is covered
in the following sections.

Table indexing

Since in any table T = 〈Q, d,R, φ〉, R contains all the possible variable assign-
ments, we can avoid storing R in memory. In fact, since the order of variables is
fixed, given any row r = R[k], k can be computed with:

k =

|Q|−1∑
i=1

(
r[i]

|Q|∏
j=i+1

d[j]

D[i]

)
+ r[|Q|] =

|Q|−1∑
i=1

(r[i] · D[i]) + r[|Q|]
(8.1)

where r[i] represents the value assumed by the variable Q[i] in r.

T1

x3 x2 x1 φ1

0 0 0 α0

0 0 1 α1

0 1 0 α2

0 1 1 α3

0 2 0 α4

0 2 1 α5

1 0 0 α6

1 0 1 α7

1 1 0 α8

1 1 1 α9

1 2 0 α10

1 2 1 α11

S12

x1 φ12

0 γ0

1 γ1

T2

x5 x4 x1 φ2

0 0 0 β0

0 0 1 β1

0 1 0 β2

0 1 1 β3

0 2 0 β4

0 2 1 β5

1 0 0 β6

1 0 1 β7

1 1 0 β8

1 1 1 β9

1 2 0 β10

1 2 1 β11

Fig. 8.2: Original tables.

2 Variables are listed from the most significant to the least significant.
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T p1

x1 x3 x2 φp1
0 0 0 α0

0 0 1 α2

0 0 2 α4

0 1 0 α6

0 1 1 α8

0 1 2 α10

1 0 0 α1

1 0 1 α3

1 0 2 α5

1 1 0 α7

1 1 1 α9

1 1 2 α11

Sp12

x1 φp12

0 γ0

1 γ1

T p2

x1 x5 x4 φp2
0 0 0 β0

0 0 1 β2

0 0 2 β4

0 1 0 β6

0 1 1 β8

0 1 2 β10

1 0 0 β1

1 0 1 β3

1 0 2 β5

1 1 0 β7

1 1 1 β9

1 1 2 β11

Fig. 8.3: Preprocessed tables.

Definition 8.1 (D). Each D[i] represents the product of all the elements starting
from position i + 1 in d, hence we refer to the tuple D as the exclusive postfix
product of d. Such an operation can be seen as a variation of the standard exclusive
prefix sum operation, in which the result is computed by summing all the elements
up to i− 1. We define D[|Q|] := 1 (the identity element for the product), similarly
to the definition of the first element of the exclusive prefix sum as 0.

On the other hand, each r[i] can be retrieved from k as r[i] = bk/D[i]c mod d[i].
Thus, R can be dropped from our representation in memory, hence, as previously
claimed, the computation of Rp is unnecessary. For a better understanding, let r
with Q = 〈x1, x2, x3〉, and d = 〈2, 16, 10〉:

r =
x1 x2 x3 φ

1 10 7 v267

From Equation 8.1, r is in position k = 1 · d[2] · d[3] + 10 · d[3] + 7 = 267 in
φ. Moreover, x1 = 1 = b267/D[1]c mod d[1], x2 = 10 = b267/D[2]c mod d[2] and
x3 = 7 = b267/D[3]c mod d[3].

As mentioned before, to maintain a coherent representation of the preprocessed
table T p = 〈Qp, dp, Rp, φp〉, the values in φ must be correctly permuted into φp.

Table reordering

This section will cover our approach to achieve the column reordering detailed in
Section 8.1.1. As mentioned before, we do not store R, since each row r ∈ R can be
retrieved from its index with the above detailed technique, hence the computation
of Rp will not be covered. On the other hand, for any φ[k] at index k in φ it is
necessary to compute its index kp in the preprocessed table T p to compute φp.
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A näıve approach would require to apply the permutation σ on each row
r = R[k], which comprises 3 steps: for each k, compute the corresponding variable
assignment 〈r[1], . . . , r[i], . . . , r[|Q|]〉, apply σ on the now available sequence of r[i]
and, finally, obtain kp using Equation 8.1. Since each of the 3 above mentioned
steps has a complexity of O (|Q|), such approach requires O (|φ||Q|). This com-
plexity depends on both the dimensions of the table (i.e., the number of rows and
columns), and can be problematic when increasing the table size.

In what follows, we show a more efficient approach to calculate kp. For sim-
plicity, we first explain how to compute the index resulting from swapping the
variables at positions i and j. Then, we provide an algorithm to compute kp by
means of a sequence of swaps.

Proposition 8.2. Given T = 〈Q, d,R, φ〉 and T s = 〈Qs, ds, Rs, φs〉, where Qs

and ds has been respectively obtained swapping Q[i] with Q[j] and d[i] with d[j]
(with i > j), φs is a permutation of φ, i.e., φ[k] = φs[k′] and k′ is:

k′ = r[1]·d[2] · · · d[i] · · · d[j] · · · d[|Q|]+ · · · (2a)

+ r[i]·d[j+1] · · · d[j] · · · d[|Q|] (2b)

+ r[j+1]·d[j+2] · · · d[|Q|]+ · · ·+r[i−1]·d[j] · · · d[|Q|] (2c)

+ r[j]·d[i+1] · · · d[|Q|] (2d)

+ r[i+1]·d[i+2] · · · d[|Q|]+ · · ·+r[|Q|] (2e)

Then, k′ = f (k, i, j) can also be calculated as:

k′ =

(2a)

k−k mod D[j−1] +

(2b)

D[j]·d[j]/d[i]·bk/D[i]c mod d[i] +

(2e)

k mod D[i]

+ d[j]/d[i]·
(2c′)

(k mod D[j]−k mod D[i−1])

(2c)

+D[i]·bk/D[j]c mod d[j]

(2d)

Proof. We use the following properties, which can be demonstrated by means of
basic algebraic procedures:

k =

|Q|∑
h=1

r[h]·D[h] =⇒
|Q|∑
h=l

r[h]·D[h] = k mod D[l − 1] (8.3)

k =

|Q|∑
h=1

r[h]·D[h] =⇒ r[h] = bk/D[h]c mod d[h] (8.4)

From Equation 8.1 we can easily verify that k′ = (2a) + (2b) + (2c) + (2d) + (2e).
Similarly, k can be written as:

k =

(2a)

r[1] · D[1] + · · ·+ r[j − 1] · D[j − 1] +r[j] · D[j]

+

(2c′)

r[j + 1] · D[j + 1] + · · ·+ r[i− 1] · D[i− 1] +r[i] · D[i]

+

(2e)

r[i+ 1] · D[i+ 1] + · · ·+ r[|Q|]
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To prove the correctness of Proposition 8.2, we show that:

• (2a) = k − k mod D[j − 1]
• (2b) = D[j] · d[j]/d[i] · bk/D[i]c mod d[i]
• (2c) = d[j]/d[i] · (k mod D[j]− k mod D[i− 1])
• (2d) = D[i] · bk/D[j]c mod d[j]
• (2e) = k mod D[i].

(2a), (2d) and (2e) are not affected by the swap of Q[i] and Q[j]: since (2a) refers
to all the variables before Q[j] (and, consequently, before Q[i]), all the terms
D[1] · · · D[j − 1] contain both d[i] and d[j], hence the swap does not produce any
effect. On the other hand, (2e) contains neither d[i] nor d[j], since it refers to all
the variables after Q[i], thus (2e) is not affected either. Using Property 8.3, we
can calculate (2a) as the difference between k and all the terms from r[j] · D[j]
on, i.e., (2a) = k − k mod D[j − 1], while (2e) is given by k mod D[i]. Finally, in
(2d) none of the terms d[i + 1] · · · d[|Q|] = D[i] contains either d[i] or d[j], thus
(2d) = r[j] · D[i] = D[i] · bk/D[j]c mod d[j].

On the contrary, (2b) and (2c) are affected by the swap of Q[i] and Q[j]: to
calculate them, we first calculate (2c′) as the difference between all the terms from
r[j+ 1] · D[j+ 1] on and all the terms from r[i] · D[i] on, i.e., (2c′) = k mod D[j]−
k mod D[i− 1]. By using Property 8.4, we compute r[i] = bk/D[i]c mod d[i] and
r[j] = bk/D[j]c mod d[j]. Finally, d[i] needs to be substituted with d[j] in all the
termsD[j] · · · D[i−1] in (2b) and (2c), sinceQ[j] has been moved to a less significant
position, taking the place of Q[i] which has been moved to a more significant one.
Thus, we multiply (2c′) by d[j]/d[i] to compensate for this effect and obtain (2c).
Equivalently, we calculate (2b) = D[j] · d[j]/d[i] · bk/D[i]c mod d[i] by swapping d[i]
with d[j] in D[j]. ut

Proposition 8.2 is then used to reorder any potential table T according to the
layout detailed in Section 8.1.1. More formally, let S = 〈S1, . . . ,Sn〉 be a sequence
of n swaps, each represented by an ordered3 pair of positions S[i] = 〈ai, bi〉, so
that we permute Q into σ (Q) (moving the desired subset of variables to the MS
positions) by means of the sequence of i swaps of the variables in positions ai and
bi, as described in Proposition 8.2. Then, φp is computed with Algorithm 18.

Algorithm 18 PreprocessComplete(φ,S)

1: for all k ∈ {1, . . . , |φ|} do in parallel
2: kp ← k
3: for all 〈ai, bi〉 ∈ S do {For every swap in S}
4: kp ← f (kp, ai, bi) {Proposition 8.2}
5: Swap (Q[ai], Q[bi]) {Swap variables}
6: Swap (d[ai], d[bi]) {Swap variable domains}
7: φp[kp]← φ[k] {Write φ[k] in position kp of φp}
8: return φp

3 We assume that, for every pair 〈ai, bi〉, ai > bi.
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The tuple of swaps S required to move |Q12| variables to the MS positions of the
tables T1 and T2 is computed as follows. Consider T1 and let us assume that s
shared variables (with 0 ≤ s ≤ |Q12|) are already within the first |Q12| positions
of the corresponding variable tuple Q1. Then, it is sufficient to swap the |Q12|−s
shared variables with index greater than |Q12| with the non-shared ones which
are placed within the first |Q12| positions. On the other hand, table T2 can be
preprocessed by swapping each shared variable Q2[h] with Q2[k] such that Q2[h] =
Q1[k] for k ∈ {1, . . . , |Q12|}. This algorithm ensures the same order of the variables
in Q12 in both tables.

As an example, we reorder the row R1[10] = 〈1, 2, 0〉 in position k = 10 of T1 in
Figure 8.2 and compute its index kp in T p1 . In this case, Q1 = 〈x3, x2, x1〉 and the
desired order is obtained first with S[1] = 〈3, 1〉, and then with S[2] = 〈3, 2〉,4 i.e,
by swapping Q[3] = x1 with Q[1] = x3, then swapping Q[3] = x3 with Q[2] = x2.
This produces the desired result Qp1 = 〈x1, x3, x2〉.

We first execute S[1], which swaps the variables in positions 3 and 1. The
corresponding domains are d[3] = d[1] = 2, thus D[3] = 1 and D[1] = 6. Then,
applying Proposition 8.2 to the row with index k = 10 results in (2a) = (2e) =
0 (since there are no variables before x3 and after x1), (2b) = 6 · 2/2 · 0 = 0,
(2c) = 2/2 (10 mod 6− 10 mod 2) = 4 and (2d) = 1 · 1 = 1, hence f (10, 3, 1) = 5,
meaning that α10 would have index 5 after S[1]. To compute its final index, we
apply S[2] = 〈3, 2〉. At this point Q1 = 〈x1, x2, x3〉, D[3] = 1, D[2] = d[3] = 2 and
d[2] = 3, hence (2c) = (2e) = 0 (since there are no variables after x3 and between
x2 and x3). On the other hand, (2a) = 5− 5 mod 6 = 0, (2b) = 2 · 3/2 · 1 = 3 and
(2d) = 1 · 2 = 2, thus φp[5] = α10 (see T p1 ).

Algorithm 18 provides a method to rearrange any couple of potential tables Ti
and Tj such that the variables of their separator are moved to the MS positions,
according to Section 8.1.1. In the next section, the impact of this preprocessing
phase on the overall performance of the algorithm will be analysed in detail, by
showing how it is more efficient than the näıve approach previously mentioned.

Computational complexity

Proposition 8.3. Algorithm 18 has a time complexity of O (|φ||S|) ≤ O (|φ||Q12|/2)
< O (|φ||Q|).

Proof. The external loop (line 1) requires |φ| iterations, the inner loop (line 3)
requires |S| iterations, equal to |Q12|/2 assuming the worst case of reordering all
the variables in Q12. Since lines 4-6 can be computed in O (1), the resulting time
complexity is O (|φ||S|) ≤ O (|φ||Q12|/2). ut

In our experimental evaluation, we performed the variable ordering with an average
of |S| = 3 swaps, resulting in an improvement of an order of magnitude with
respect to the näıve approach, which, in contrast, requires tens of operations for
each row. It is important to note that this preprocessing phase is done once for
all, while compiling the BN in the corresponding JT (see Section 2.4). In fact, the

4 Swapping x3 and x2 is not necessary since neither of them belongs to Q12, but it has
been included in our example to better explain the algorithm.
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acquisition of new evidence does not change the structure of the network itself,
hence we can avoid to reorder each potential table at each BP by storing and
updating the couple of corresponding reordered tables for each separator. Notice
that such preprocessing phase does not result in additional memory requirements
since the original tables can be discarded as they are not needed in any subsequent
phase of the algorithm. Furthermore, each iteration of the external loop (lines 1–7)
of Algorithm 18 is independent and can be computed in parallel. As a consequence,
the worst-case time complexity of the parallel version of Algorithm 18 is O(|φ||S|/t),
where t is the number of threads. Given a JT = (V,E), our algorithm needs to
store a couple of potential tables for each separator. Since threads can index input
rows on-the-fly, mapping tables can be avoided. Thus, the memory requirements
are O (2 · |E|). In contrast, the approach proposed by Zheng and Mengshoel [122]
maintains one potential table for each clique, but it needs two mapping tables
for each separator table. Hence, it requires O (V + 2 · |E|) tables, resulting in a
greater memory footprint.

8.1.2 GPU kernel for BP

In our approach to BP on GPUs, each block of threads is responsible for one ele-
ment of the separator table, which is associated to a corresponding group of rows
in potential tables. Such high-level organisation of the computation allows us to
carry out the entire reduction and scattering stages within a single thread block,
hence avoiding any costly inter-block synchronisation structure. On one hand, the
performance of our algorithm clearly benefits from the lack of interdependence
among different blocks, which would reduce the overall computation parallelism.
On the other hand, since the size of thread blocks has an intrinsic limit imposed
by the hardware architecture (e.g., 2048 threads in Kepler GPUs), the proposed
organisation may serialise part of the workload if the number of rows to man-
age exceeds such limit. Nevertheless, such an issue is not problematic in our test
cases, since the above mentioned case rarely verifies. In fact, in our experimental
evaluation, each block has to reduce an average of 14 elements,5 hence allowing a
full parallelisation. If the serialisation is small (i.e., each thread has to reduce and
scatter few rows), the effect on the overall performance is negligible. This is due to
the fact that the task is computed extremely efficiently in thread-private memory
space using registers. In what follows, we explain the actual implementation of the
above mentioned concepts in detail.

Reduction (⇓)

Once the input data is in the shared memory, the kernel starts the reduction phase
that, in our approach, is implemented with the NVIDIA CUB library6 by means
of a block reduce raking algorithm. The algorithm consists of three steps: i) an
initial sequential reduction in registers (if each thread contributes to more than
one input), in which warps other than the first one place their partial reductions

5 This is the average, over all BNs, of the ratio between the average potential table size
and the average separator table size (see Table 8.1).

6 Available at http://nvlabs.github.io/cub.

http://nvlabs.github.io/cub


128 8 CUBE: a CUDA implementation for Bucket Elimination

into shared memory, ii) a second sequential reduction in shared memory, in which
threads within the first warp accumulate data by ranking across segments of shared
partial reductions, and iii) a final reduction within the raking warp based on the
Kogge-Stone algorithm [66] produces the final output.

t1
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t1

t2

t2
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t3

t3

t3

t4

t4
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Reduction
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memory
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t8
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Fig. 8.4: Block reduce raking algorithm (best viewed in colour).

Figure 8.4 shows a reduction of 32 input values performed by a block of 8 threads
{t1, . . . , t8}, in which each thread operation is pictured as a circle and each input
value is represented with a solid arrow, while the dotted ones represent partial
results propagated among threads. In our implementation, the definition of pa-
rameter ρ is managed by the aforementioned library, in order to achieve a good
balance between parallelisation degree and communication among threads. This
scheme is particularly efficient, since it involves a single synchronisation barrier
after the first phase it incurs zero bank conflicts7 for primitive data types. On
newer CUDA architectures (e.g., NVIDIA Kepler), such implementation exploits
shuffle instructions, which are a new set of primitives provided by the CUDA
programming language. Shuffle instructions enable threads within the same warp
to exchange data through direct register accesses, hence avoiding shared memory
accesses and improving the computational throughput of the algorithm. In partic-
ular, such scheme is collectively performed by the block of threads associated to
a particular element of the separator table, in order to compute its updated value
as the sum of the corresponding rows of the first potential tables, i.e., the ones
with a matching variable assignment. Once the reduction of the entire chunk has
been completed, the output of the reduction serves as input for the subsequent
scattering phase of belief propagation.

7 If multiple memory accesses map to the same memory bank, the accesses are serialised
and split into as many separate conflict-free requests as necessary, thus decreasing the
effective bandwidth.
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Scattering (⊕)

The final stage of BP consists of the scattering operation (see Section 2.4), which
performs the actual update of T p2 by means of Rij computed in the above men-
tioned phase. The implementation of such operation benefits from the proposed
memory layout, since it is realised with maximum parallelism and computational
throughput. Each row of T p2 is assigned to one thread, which multiplies its current
value for Rij , computed in the reduction phase. Once the kernel has been executed
by all blocks, the propagation of belief has completed the inclusion of new evidence
in T p2 , which can be finally transferred back to the CPU memory.

Having discussed how we implement a CUDA kernel for BP that exploits our
improved table layout, we now show how we realise a kernel for the solution of
COPs that achieves the same performance benefits.

8.1.3 GPU kernel for COPs

In this section we discuss our approach for the implementation of the message
passing phase of the version of BE that solves COPs (Algorithm 2) [17]. Specifically,
we provide a highly parallel algorithm that computes the ⊕ and the ⇓ operators of
BE, i.e., the join sum (see Section 2.3.1) and the maximisation (see Section 2.3.2).
Notice that the approach discussed in this section is specifically devised to exploit
the improved table layout described in Section 8.1.1, which requires tables to be
complete. Therefore, here we assume that tables contain all possible assignments
of the variables in their scope, including unfeasible assignments that are explicitly
represented with −∞ values. A more general approach, which can also process
incomplete tables,8 will be detailed in Section 8.2.

Join sum (⊕)

We first discuss the implementation of the join sum operation on GPUs. Such
operation, denoted as ⊕, is very similar to the join of relational algebra, in which
the output table contains one row for each couple of rows of the input tables that
have a matching assignment of the shared variables. In the case of the join sum,
the value of each row is given by the sum of the values of the corresponding input
rows. To better explain how the join sum works, we consider the tables T p1 and T p2
in Figure 8.3. In what follows, we denote as group a set of rows that all have the
same assignment over the shared variables, or, more intuitively, the same colour.

In order to achieve a full parallelisation of the join sum, we adopt a gather
paradigm [68], in which each thread is responsible for the computation of exactly
one element of the output. Such a paradigm offers many advantages with respect
to the counterpart approach, i.e., the scatter9 paradigm, in which each thread is
associated to one element of input and contributes to the computation of many

8 Representing all variable assignments can lead to tables of untractable size, since, in
general, the number of rows is exponential in the number of variables.

9 Even if this paradigm shares the same name with the scattering phase of belief prop-
agation introduced in Section 3, it refers to a completely different concept.
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Algorithm 2 BucketEliminationCOP (CN, F1, . . . , Fl, o)

1: Partition {C1, . . . , Cm} and {F1, . . . , Fl} into n buckets according to o
2: for all p← n down to 1 do
3: for all Ck, . . . , Cg over scopes Xk, . . . , Xg, and

for all Fh, . . . , Fj over scopes Qh, . . . , Qj ,
in bucket p do

4: if xp = ap then
5: xp ← ap in each Fi and Ci
6: Put each Fi and Ci in appropriate bucket
7: else
8: Up ←

⋃
iXi − {xp}

9: Vp ←
⋃
iQi − {xp}

10: Wp ← Up ∪ Vp
11: Cp ← πUp (ongi=1 Ci)
12: for all tuples t over Wp do

13: F p (t)← ⇓
ap | (t,ap) satisfies
{C1,...,Cg}

⊕ji=1Fi (t, ap)

14: Place F p in the latest lower bucket mentioning a variable in Wp,
and Cp in the latest lower bucket with a variable in Up

15: Assign maximising values for the functions in each bucket
16: return F (ā∗), i.e., the optimal cost computed in the first bucket and ā∗, i.e.,

the optimal assignment

output elements. In fact, scatter-based algorithms have a reduced degree of paral-
lelism since they often require atomic primitives (which inherently serialise parts
of the computation) to avoid having multiple threads concurrently operating on
the same output. As previously discussed, only the array φ is stored in memory,
since we assume that tables are complete10 and, hence, it is not necessary to store
the variable assignment part. Therefore, we only discuss how we compute the array
φ of the output table Ti ⊕ Tj , denoted as φ⊕. We map one GPU thread t to each
element of φ⊕, denoted as φ⊕[t].

Our main goal is that each thread should be capable of computing the indices
of its input rows in T p1 and T p2 in a closed form only on the base of its own ID
t, with the aim of avoiding unnecessary memory accesses to the input data. To
achieve this, we now introduce some background concepts needed to explain our
indexing approach. First, notice that the number of rows in each group is equal to
the number of all the possible assignments of the non-shared variables in the scope
of the table, i.e., the product of the domain sizes of such variables. In particular,
each group in T p1 consists of 6 rows, as D2 ·D3 = 6, and the same applies to T p2 ,
i.e., D4 ·D5 = 6. Since the join sum operation associates each of these 6 rows in
T p1 to each of the 6 matching rows in T p2 , the corresponding group in the output
table will contain D2 ·D3 ·D4 ·D5 = 36 rows.

10 A table Ti with the scope Xi is complete if it contains all the possible assignments
over the domains of the variables in Xi. We represent unfeasible rows as −∞ values.
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In general, it is easy to verify that, if Xi = {xi1 , . . . , xih} and Xj = {xj1 , . . . ,
xjk} are the scopes of the input tables Ti and Tj , the output table Ti ⊕ Tj (where
the ⊕ operator represents the join sum) contains a number of rows equal to: ∏

xa∈Xi∩Xj

Da

 ·
 ∏
xb∈Xi−Xj

Db

 ·
 ∏
xc∈Xj−Xi

Dc


︸ ︷︷ ︸

rows(Xi,Xj)

. (8.5)

For convenience, we define the function rows to denote the number of rows in
each group of the output table induced by the scopes Xi and Xj . Formally, rows :
2X × 2X → N, where X is the set of variables and 2X denotes the powerset of X.

Algorithm 19 JoinSumCompleteKernel(t,Xi, Xj)

1: g ← b t
rows(Xi,Xj)

c {Output group t belongs to}
2: idx← t mod rows (Xi, Xj) {ID of t within g}
3: #i ←

∏
xb∈Xi−Xj Db {# of rows associated to g in Ti}

4: #j ←
∏
xc∈Xj−Xi Dc {# of rows associated to g in Tj}

5: γ ← g ·#i + b idx#j
c {Input row in Ti}

6: δ ← g ·#j + idx mod #j {Input row in Tj}
7: φ⊕[t]← φi[γ] + φj [δ] {Compute and store output}

Algorithm 19 summarises the approach we propose to compute the join sum of two
tables Ti and Tj , which is executed in parallel by each thread to index the input
tables and to compute each row of the output table. As a first step, each thread t
identifies which group it belongs to (line 1), by dividing its index t for the number
of rows in each output group, i.e., rows (Xi, Xj). Specifically, t operates within
the gth group. Furthermore, t computes its index idx relative to the first row of its
group in line 2. Then, to compute the indices γ and δ of its two input rows, t first
calculates #i and #j , representing the number of rows of each group in Ti and Tj
respectively, by multiplying the sizes of the domains of the non-shared variables
in each table (lines 3 and 4).

A further inspection of lines 5 and 6 reveals how Algorithm 19 organises the
rows (Xi, Xj) elements of the gth output group among the corresponding GPU
threads. It associates the first #j rows of such group to the first row of the gth

group in Ti, and each of these threads is then associated to each of the #j rows
of the gth group in Tj . This pattern is then repeated for the second row of the gth

group in Ti, and so on for all the #i rows of the gth group in Ti (Figure 8.5). Note
that the offsets g ·#i and g ·#j ensure the selection of the gth group in Ti and Tj ,
as they represent the total number of rows in the g groups that precede the gth

one in each input table.
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Fig. 8.5: Join sum output computation.

For a better understanding, we show how Algorithm 19 computes the row at index
59 of T p1 ⊕ T

p
2 . Such a row would be computed by the thread t = 59, associated

to the index idx = 23 of the output group g = 1, i.e., the grey one. In fact, as
introduced earlier in this section, rows (X1, X2) = 36. It is easy to verify that
#i = #j = 6. Then, t computes the indices of its input rows in T p1 and T p2 , i.e.,
γ = 6 + 3 = 9 and δ = 6 + 5 = 11. Hence, t = 59 computes the element at index 23
of the output grey group, i.e., the one associated to the line at index 3 of the grey
group in T p1 and the last line of the grey group in T p2 , as represented by γ and δ.

Note that the only input required by each thread executing Algorithm 19 is
its own ID t, since Xi and Xj are equal and known in advance by all threads.
The thread ID t does not determine which operations are executed (as they are
equal for all threads), but only where the input data is located. For these reasons,
Algorithm 19 fits perfectly the SIMD model adopted by GPU architectures. In
addition, Algorithm 19 does not contain any branching instruction, which would
cause a phenomenon called divergence, which reduces the degree of parallelism by
forcing the serialisation of threads executing different branches of the program [52].

Finally, Algorithm 19 relies on a data reuse pattern, as each row of Ti is the
input of #j output elements and, symmetrically, each row of Tj is the input of
#i output elements. We avoid expensive accesses to the GPU global memory11 by
first transferring each coloured group to the shared memory, which allows threads
to fetch data roughly 100× faster [43]. Notice that the use of the shared memory is
possible only because we represent the input data with the table layout discussed
in Section 8.1, in which coloured groups are in small, contiguous chunks of memory.
Since GPUs only have tens of KB of shared memory available, it is not possible
to achieve the same benefits with the original tables (Figure 8.2), which should be
transferred in toto, possibly exceeding the hardware capabilities of the GPU.

11 Global memory, in which the data is initially stored, is the slowest type of memory of
the GPU hierarchy [43].
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Having discussed our GPU implementation of the join sum, in what follows we
show how we realise the maximisation operation of BE in parallel on the GPU.

Maximisation (⇓)

Maximisation can be seen as a particular case of the relational algebra project
operation. In the case of BE, maximisation operates by removing the variable
associated to the current bucket from the input table Ti. As a consequence, the
resulting table contains Dp copies of each unique assignment of the variables in
its scope, i.e., Xi − {xp}. Maximisation then maps each unique assignment to
the maximum of the Dp values mentioned above. For example, if we want to
compute the maximisation of T1 (Figure 8.2) by removing x3, we first obtain the
table shown in Figure 8.6, in which each unique variable assignment is highlighted
with a different colour (here Dp = D3 = 2). The final output is computed as
shown in Figure 8.8. Figures 8.6 and 8.8 highlight the high degree of parallelisation
inherent in the maximisation operation, as each coloured group can be processed
independently from the others.

x2 x1 φ
0 0 α0

0 1 α1

1 0 α2

1 1 α3

2 0 α4

2 1 α5

0 0 α6

0 1 α7

1 0 α8

1 1 α9

2 0 α10

2 1 α11

Fig. 8.6: T1 without x3.

x2 x1 x3 φp

0 0 0 α0

0 0 1 α6

0 1 0 α1

0 1 1 α7

1 0 0 α2

1 0 1 α8

1 1 0 α3

1 1 1 α9

2 0 0 α4

2 0 1 α10

2 1 0 α5

2 1 1 α11

Fig. 8.7: T1 after the preprocessing.

x2 x1 φ⇓
0 0 max(α0, α6)
0 1 max(α1, α7)
1 0 max(α2, α8)
1 1 max(α3, α9)
2 0 max(α4, α10)
2 1 max(α5, α11)

Fig. 8.8: Maximisation output (best viewed in colour).
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Nonetheless, Figure 8.6 also highlights the poor data locality of this table layout
(similar to the one in Figure 8.2), which causes the same issues discussed in Sec-
tion 8.1.1. To overcome these problems, we preprocess the input table to achieve
the row arrangement shown in Figure 8.7. In particular, we aim at placing each
coloured group in consecutive memory locations, so to achieve a better data local-
ity and improve the efficiency of the maximisation operation. This is equivalent to
moving xp to the last column, and can be implemented with the technique pre-
sented in Section 8.1.1, and specifically by considering as shared all the variables
in the scope of the table minus xp.

This table layout enables an efficient GPU algorithm to compute the final out-
put of the maximisation operation, i.e., φ⇓ in the above example. In general, the
array φ of the output table can be computed with a segmented reduction algo-
rithm [102], a well-known GPU primitive that differs from the standard reduction
in that the latter operates on the entire set of input elements (e.g., it computes
the maximum over the entire length of the input array), while the former operates
on several fractions of the input data, i.e., the coloured groups in our case.

Finally, we further improve the efficiency of our CUBE implementation by
avoiding unnecessary data transfers between the host and the device when com-
puting the maximisation operation. In particular, since the BE algorithm always
applies the maximisation operation on the result of the join sum operation (line 13
of Algorithm 2), we can avoid to transfer the join sum result (produced on the
GPU memory) from the GPU to the CPU and directly run the maximisation on
the GPU, hence saving two data transfers.

All the techniques discussed in this section assume that tables are complete.
Unfortunately, representing complete tables in memory is not practical for several
applications,12 as, in general, the number of rows of a complete table is exponential
in the number of variables in its scope. Against this background, in what follows
we propose a more general version of CUBE that can process incomplete tables.

8.2 Processing incomplete tables

In this section we elaborate our approach to the parallelisation of the BE algorithm
for COPs13 that does not require complete tables [15]. In this way, unfeasible
assignments can be dropped from the representation in memory, so to achieve a
better scalability thanks to lower memory requirements.

8.2.1 Table preprocessing

In order to explain our approach, we consider the example introduced in Sec-
tion 2.3.1 (Figure 2.6). The goal is to rearrange the rows of these tables so to
have the same final placement discussed in Section 8.1.1, since the current data
organisation suffers from very poor data locality.

12 Including the COP formalisation for GCCF proposed in Chapter 9.
13 In contrast with Section 8.1, here we only discuss our method for COPs, since BP

typically does not involve hard constraints and hence, it results in complete tables.
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T1

x1 x3 x5 x8 φ1

0 1 0 1 α0

1 0 0 1 α1

1 1 0 1 α2

0 1 0 0 α3

0 0 0 1 α4

1 1 1 1 α5

⊕
T2

x1 x2 x3 x4 x6 x10 φ2

1 0 0 1 1 0 β0

1 0 1 1 1 0 β1

0 1 0 0 1 1 β2

1 1 0 1 0 1 β3

0 0 0 1 1 0 β4

1 1 1 1 1 1 β5

Fig. 2.6: Original tables T1 and T2 (best viewed in colour).

In particular, the preprocessing of these tables aims at achieving two fundamental
requirements: i) rows of the same colour should be in consecutive memory ad-
dresses, to have full coalescence in memory accesses and to reduce the sparsity of
data; ii) coloured groups should be in the same order (considering the set of shared
variables) in both tables, to locate them efficiently when computing the join sum
result. This is required since tables can be incomplete. We achieve these objectives
by means of Algorithm 20.

Algorithm 20 PreprocessIncomplete (T1, T2)

1: Move shared variables in Q1 and Q2 to the |Q12| LS places
2: Sort R1, R2, φ1, φ2 using a LSD radix sort on the |Q12| LS places
3: Remove row groups that do not match between T1 and T2

The first step of the preprocessing phase requires to move the |Q12| columns corre-
sponding to the shared variables to the |Q12| Least Significant (LS) places. Notice
that this step is an embarrassingly parallel [47] task, and it can be trivially divided
among |R| threads, each independently processing a single row. Subsequently, the
algorithm reorders R and φ by means of a LSD radix sort algorithm [98] imple-
mented with the NVIDIA CUB library. It is not necessary to adopt a radix sort
algorithm in this phase (as every sorting algorithm that operates on the basis of
the LS |Q12| places would work). However, we decide to use such an algorithm
since it can be parallelised very efficiently [98].

As a final step, the algorithm remove the non-matching groups of rows (white
rows in Figure 2.6), since they do not generate any output row in the result table,
obtaining the preprocessed tables T p1 and T p2 in Figure 8.9. Notice that none of
these three steps requires to have an entire table stored in the global memory, thus
it is possible to easily split the input tables into manageable chunks meeting the
memory capabilities of the GPU and preprocess them.14

14 If it is necessary to sort a table larger that the GPU global memory, it is possible to
split it into chunks, sort each of them (using the above mentioned radix sort algorithm),
and then merge the sorted chunks (adopting the merge sort algorithm) on the CPU.
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T p1

x5 x8 x1 x3 φp1
0 1 0 0 α4

0 1 1 0 α1

0 1 1 1 α2

1 1 1 1 α5

⊕
T p2

x6 x10 x2 x4 x1 x3 φp2
1 1 1 0 0 0 β2

1 0 0 1 0 0 β4

1 0 0 1 1 0 β0

0 1 1 1 1 0 β3

1 0 0 1 1 1 β1

1 1 1 1 1 1 β5

Fig. 8.9: Final preprocessed tables (best viewed in colour).

In the next section, we discuss how it is possible to exploit this row layout to index
these tables and have multiple thread efficiently locate their input to compute the
join sum in parallel on the GPU.

8.2.2 Join sum (⊕)

Similar to what we discussed in Section 8.1.3, we adopt a gather paradigm [68],
in which each thread is responsible for the computation of exactly one element of
the output. As mentioned before, such a paradigm offers many advantages with
respect to the scatter paradigm, in which each thread is associated to one element
of input and contributes to the computation of many output elements.

In our particular case, one thread computes one particular output row at index
i (i.e., both R[i], the variable assignment part, and φ[i], the value part), on the
basis of the two associated input rows, which can be identified as explained below.
First, we compute the number of rows in each coloured group for T1 and T2. As a
result, we obtain a tuple H such that H[i] is the number of rows of the ith coloured
group. This operation can be seen as the computation of the histogram of the rows
of the tables, which is a well-know primitive that can be parallelised very efficiently.
In the above example, H1=〈1, 1, 2〉, and H2=〈2, 2, 2〉. These histograms are also
useful to compute the number of rows of the result table, a crucial information
when we have to allocate the exact amount of memory to store the result. Each
group of output rows has a number of elements equal to the product of the numbers
of rows of the corresponding input groups. Hence, the histogram of the result table,
namely H⊕, is computed as the element-wise product15 (denoted as ∗) of the input
histograms. It is easy to verify that 〈1, 1, 2〉 ∗ 〈2, 2, 2〉 = 〈2, 2, 4〉 is the histogram
of the result table in Figure 2.7. The sum of the values of such histogram is the
total number of rows of the result table.

These histograms also allow each thread to efficiently locate its input rows, as
well as the index of the output row it is responsible for, by indexing the coloured
groups in T1 and T2. As a first step, we compute the exclusive prefix sum16 of the
input and output histograms, which can be done very efficiently on the GPU [102]
and, in our case, it is implemented with the NVIDIA CUB library. Given an

15 Element-wise product is an embarrassingly parallel operation.
16 In contrast with the exclusive postfix product introduced in Definition 8.1, in the ex-

clusive prefix sum the result at index i is computed by summing all the elements of
the input up to the position i− 1.
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Algorithm 21 JoinSumIncompleteKernel (H1,H⊕,P1,P2,P⊕)

1: bx← block ID
2: tx← thread ID
3: if tx < H⊕[bx] then {If the thread ID is within the size of the block...}
4: idx1 ← P1[bx] + tx mod H1[bx] {Index of the input row in T1}
5: idx2 ← P2[bx] + btx/H1[bx]c {Index of the input row in T2}
6: idx⊕ ← P⊕[bx] + tx {Index of the output row}
7: Compute the join sum of input rows at indices idx1 and idx2 in T1 and T2

8: Store the results in R⊕[idx⊕] and φ⊕[idx⊕]

histogram H, its exclusive prefix sum P is a tuple in which each element P[i]
represents the index of the first row of the ith coloured group. With these data
structures, each thread can compute its row in the join sum result, as summarised
in Algorithm 21. Such an algorithm represents the actual kernel function executed
by the GPU, which receives as inputs the histograms of T1 and the output his-
togram (i.e., H1 and H⊕),17 as well as the corresponding prefix sum tuples (i.e.,
P1, P2, P⊕). The variable assignment and the value parts of the output table are
respectively denoted as R⊕ and φ⊕.

It is important to note the absence of divergence in Algorithm 21, thanks to the
fact that the only branch instruction (line 3) is used to limit the number of running
threads to the amount needed, i.e., H⊕[bx]. For the sake of clarity, we made a
number of simplifications in Algorithm 21. First, here we do not explicitly mention
the use of shared memory, which is used to exploit the data reuse18 inherent to
the join sum operation, so to avoid unnecessary memory accesses to the global
memory. The properties of these memory transfers between shared and global
memory are discussed in Section 8.3.1. Furthermore, we assume that each coloured
group of rows is computed by exactly one block of threads. In contrast, our actual
implementation realises a dynamic load balancing by assigning the appropriate
number of groups to each block, in order to achieve a higher GPU occupancy and
computational throughput. This number is determined by the amount of shared
memory of the GPU and the maximum number of threads per block. Our approach
can also process groups of rows which are larger than the available shared memory:
this case is managed by our implementation by splitting such a group into a number
of sub-groups, once again with the objective of maximising the GPU occupancy.

8.2.3 Maximisation (⇓)

In this section, we describe how we implement the maximisation operation of
BE on GPUs, exploiting the data layout discussed in Section 8.2.1. In particular,
we adopt the same preprocessing phase detailed by Algorithm 20, with the sole
difference that the set of shared variables is represented by all the variables in

17 We do not explicitly provide H2 to the kernel, since this information is implicitly
included in H1 and H⊕, i.e., H2[i] = H⊕[i]/H1[i].

18 The blue rows in Figure 2.7 both refer to the same input row in T1, hence both the
corresponding threads can reuse the same input data.
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the scope of the table, excluding the one we want to marginalise. Intuitively, this
corresponds to move such a variable to the Most Significant (MS) place. In this
case, if we compute the histogram H and the exclusive prefix sum P as previously
described, we are able to index the groups of rows that must be considered when
computing the maximum for the output, denoted by R⇓ and φ⇓ for the variable
assignment and the value part.

Algorithm 22 shows a simplified version of our actual implementation, in which
we generate the appropriate number of threads and blocks on the basis of the size
of the input. In contrast with the join sum operation, we do not have any data
reuse (i.e., each input row is accessed by exactly one thread), hence the use of
shared memory is not necessary. As a final performance remark, notice that the
maximisation of theH[tx] elements at line 5 is sequentially executed by the thread.
Nevertheless, this aspect has a negligible impact of the computational throughput
of our approach, since H[tx] depends on the size of the domain of the marginalised
variable and, in our experiments, it is usually a small value. When the considered
variable has a binary domain, line 5 collapses to one single max operation. However,
our approach can be easily extended by devising a parallel reduction operation that
implements the marginalisation in the case of variables with bigger domains.

8.3 Data transfers

In the following sections we detail how our preprocessing technique allows an
optimised management of data transfers, thanks to full memory coalescence and
pipelining (see Section 2.5).

8.3.1 Global-shared memory transfers

Thanks to our preprocessing phase, the portion of input data needed by each
thread block is read from global memory with fully coalesced memory accesses,
since such data is already organised in consecutive addresses. Transfers are further
optimised using vectorised19 memory accesses provided by CUDA architectures to
increase bandwidth, reduce instruction count and improve latency.

Algorithm 22 MaximisationIncompleteKernel (H,P)

1: tx← thread ID
2: if tx < |H| then
3: idx← P[tx]
4: R⇓[tx]← R[idx] without the column in the MS place
5: φ⇓[tx]← max of the H[tx] values starting at φ[idx]

19 Vectorised memory instructions compile to single LD.E.128 and ST.E.128 instructions
to transfer chunks of 128 bits at a time.
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(a) Uncoalesced memory accesses.
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(b) Coalesced memory accesses.

Fig. 2.33: Uncoalesced vs. coalesced memory accesses.

8.3.2 Host-device data transfers

The table layout presented in Sections 8.1 and 8.2 allows tables to be split into
several data segments and threads to independently operate in each segment. This
leads to a twofold improvement: i) we devise a pipelined flow of smaller copy-and-
compute operations (see Section 2.5.2), by amortising the cost of CPU-GPU data
transfers on the overall algorithm performance; ii) we can process tables that do
not fit into global memory, by breaking them into more manageable chunks. This
allows our approach to perform BE even on problems that were intractable for
previous approaches [122].

Large tables processing

Our technique can be applied to execute BE-based algorithm even when potential
tables do not fit into the GPU global memory. Tables are split into small data
structures, by limiting the maximum number of host-device data transfers that can
run concurrently on the GPU. We define maxs as the maximum number of kernels
whose total amount of input and output data can be stored into global memory.
Figure 8.10 shows an example, in which maxs = 2. Each kernel Ki is enqueued
in stream i mod maxs. Transaction H→D3 cannot be scheduled in parallel with
D→H2 (unlike the example of Figure 2.35), as it would violate the above mentioned
memory constraint. Thus, one time slot is skipped in order to complete the copy
D→H1 and to free an adequate amount of memory before starting H→D3. The
serialisation of these two operations is a direct consequence of their execution in the
same stream (i.e., stream 1). Even though the hardware constraints limit the size
of data to be transferred and processed, the proposed approach allows oversized
tables to be processed in multiple steps, improving scalability. As an example, 5
out of 7 instances in the considered dataset (see Section 8.4.3) cannot be solved
without this capability of handling large tables.

Having discussed our implementation of BP and BE on GPUs, we benchmark
its performance in our experimental evaluation.
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H→D1 H→D2 H→D3 H→D4

D→H1 D→H2 D→H3 D→H4

K1 K2 K3 K4

maxs

Fig. 8.10: Limited number of streams (best viewed in colour).

8.4 Experimental evaluation

In order to evaluate our approach presented in Sections 8.1 and 8.2, we conducted
three different sets of experiments, discussed respectively in Sections 8.4.1, 8.4.2
and 8.4.3. We first test the performance of CUBE when processing complete tables,
and specifically when solving BP on JTs and COPs, comparing our algorithm with
the most recent GPU approaches in both scenarios [46, 122]. Then, we test our
approach that handles incomplete tables, adopting a standard COP dataset [9].
CUBE is implemented in CUDA,20 and all our experiments are run on a machine
with an AMD A8-7600 processor, 16 GB of memory and an NVIDIA Tesla K40.

8.4.1 BP on JTs

In this section we benchmark the approach described in Section 8.1.2, i.e., the
one that exploits the completeness of tables to achieve an efficient indexing of
potential tables when executing BP on JTs. We compare our approach with the
best approach (i.e., the SVR regression model) published by Zheng and Mengshoel
[122], i.e., the most recent GPU implementation for BP on JTs, using the authors’
implementation. We use the same BN dataset,21 which comprises various BNs
with heterogeneous structures and variable domains. We compile each BN into a
JT, which is then used as input for both approaches in order to guarantee a fair
comparison. Table 8.1 details some features of our JTs, i.e., the number of junc-
tion tree nodes resulting from their compilation and the minimum, maximum and
average size of the potential and separator tables. Following Zheng and Mengshoel
[122], the compilation of these networks into the corresponding junction trees has
been done offline, before the execution of the belief propagation algorithm. For
this reason, it has been excluded from the runtime measurements.

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water

Number of JT nodes 29 337 36 162 854 904 877 21
Max potential size 1249280 84480 7257600 38400000 151200 156800 448000 589824
Avg potential size 117257 29157 476133 516887 2400 3404 10102 144205
Min potential size 336 495 216 4 4 4 4 9
Max separator size 62464 5280 907200 2400000 6048 22400 56000 147456
Avg separator size 3950 1698 38237 58691 204 528 1376 28527
Min separator size 72 16 7 2 2 2 2 3

Table 8.1: Bayesian Networks.

20 Our implementation is available at https://github.com/filippobistaffa/CUBE.
21 Available at http://bndg.cs.aau.dk/html/bayesian_networks.html.

https://github.com/filippobistaffa/CUBE
http://bndg.cs.aau.dk/html/bayesian_networks.html


8.4 Experimental evaluation 141

Table 8.2 reports the runtime in milliseconds corresponding to the following phases
of the BP on JTs algorithm:

• The total time required to complete all the reduce and scatter phases in the
sequential version.

• The total time required to preprocess all potential tables using our technique.
• The total time required to complete the data transfers between the host and

the device.
• The total time required to complete all the reduce and scatter phases in CUBE.
• The GPU speed-up achieved by CUBE.
• The total time required to complete all the reduce and scatter phases in the

GPU approach by Zheng and Mengshoel based on the SVR regression model.
• Zheng and Mengshoel’s speed-up.

Since the preprocessing phase must be done only once and can be avoided when
any new evidence is received and propagated, it has not been considered in the
calculation of the speed-up. Moreover, we do not consider the runtimes relative to
data transfers in such calculation, as such time is amortised thanks to our pipelin-
ing technique (Figure 2.35). For a fair comparison, transfers are also excluded
when calculating the speed-up for Zheng and Mengshoel’s approach.

In our tests, our algorithm outperforms the counterpart in the majority of the
instances, i.e., all except in the Water network, where runtimes are comparable. In
more detail, our approach achieves speed-ups at least 56% higher than the coun-
terpart in the Barley dataset (i.e., 33.03× vs 21.14×). Our best improvement with
respect to the counterpart happens on the Mildew network, where our approach
runs 39× faster than the CPU version, and it produces a GPU speed-up that is the
466% higher than the counterpart. In general, our approach produces speed-ups
that increase when the average potential table size increases (see Table 8.1). In
fact, we achieve speed-ups less than 10× only with small instances (i.e., Munin2

and Munin3).

Mildew Diabetes Barley Munin1 Munin2 Munin3 Munin4 Water

CPU R/S 117 219 1057 6584 54 109 315 123
Preprocessing 28 71 294 2395 24 37 106 46

Transfers 12 57 110 1464 16 39 45 15
CUBE R/S 3 14 35 193 14 19 31 12

CUBE speed-up 39× 15.64× 33.03× 34.11× 3.85× 5.73× 10.16× 10.25×
SVR R/S 17 34 50 648 48 38 71 14

SVR speed-up 6.88× 6.44× 21.14× 10.16× 1.12× 2.86× 4.43× 8.78×

Table 8.2: BP on JTs results (time values are in milliseconds).

8.4.2 COPs with complete tables

In this section we evaluate the performance of CUBE when solving COPs in which
unfeasible assignments are explicitly represented as −∞ values, i.e., the tables are
complete. The main goals of this set of experiments are: i) to evaluate the parallel
speed-up that CUBE achieves with respect to a sequential version of BE, ii) to
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compare CUBE against the most recent approach to parallelise BE on GPU, i.e.,
the work by Fioretto et al. [46], and iii) to evaluate the scalability of our approach
with respect to the size of the problem.

Notice that, even if standard, realistic COP datasets are available [9] (see Sec-
tion 8.4.3), such instances cannot be represented as COPs with complete tables, as
they exceed the memory capabilities of our machine.22 For this reason, and since
we directly compare with Fioretto et al.’s approach, we adopted the same experi-
mental methodology proposed by the authors. In particular, we tested CUBE on
3 different Constraint Network (CN) topologies: i) random networks with a graph
density of 0.3, ii) scale-free networks generated with the Albert and Barabási [1]
model using m = 2, and iii) 2-dimensional square grid networks, in which internal
nodes are connected to four neighbours, while nodes on the edges (resp. corners)
are connected to two (resp. three) neighbours. Each function Fi is generated using
uniformly distributed random integer values in [0, 100] and the constraint tight-
ness (i.e., ratio of entries in such tables different from −∞) is set to 0.5 for all
experiments. Domain size is 5 for all experiments.

We compared both GPU approaches with FRODO [72], a standard sequential
COP solver also considered by Fioretto et al. as baseline benchmark. In particular,
we solve all the instances using the DPOP algorithm [89]. To ensure a fair com-
parison, we run all the algorithms on the same instances and adopting the same
variable ordering, i.e., the one produced by FRODO. We consider the entire exe-
cution time for all the algorithms, including data transfers.23 For Fioretto et al.’s
approach we use the authors’ implementation.

Figures 8.11–8.13 show the speed-up of both GPU approaches with respect to
FRODO when increasing the number of variables in the CN. Each data point in
the plots represents the average over 20 random instances of the ratio between
the runtime required by the GPU approach and FRODO’s runtime. The results
show that CUBE allows a dramatic runtime reduction with respect to FRODO,
by computing the solution at least one order of magnitude faster than the sequen-
tial approach in every experiment. In particular, CUBE is, on average, 530 times
faster than FRODO when considering the biggest instances in our experiments
(i.e., random networks with n ≥ 30 and scale-free and grid networks with n ≥ 70),
by reaching a maximum speed-up of 652×. More important, such speed-ups in-
crease when the complexity of the problem grows, thus confirming the scalability
of CUBE, which correctly exploits the additional degree of parallelism inherent in
the problem. In contrast, the speed-up of the approach by Fioretto et al. decreases
when the size of the problem increases.

Finally, the results show that the speed-up saturates after a certain number
of variables (25 for random networks, 70 for scale-free networks, and 36 for grid
networks). This saturation happens when the GPU reaches a full occupancy and it
runs the maximum number of concurrent threads (i.e., 30720 for our GPU model).
After that, hardware constraints force blocks of threads to run sequentially, hence
limiting the maximum speed-up.

22 Recall that the number of rows of a complete table is exponential with respect to the
number of variables in its scope.

23 We measured that, on average, data transfers take approximately 20% of the entire
CUBE runtime.
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Fig. 8.11: Speed-up on random networks.
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Fig. 8.12: Speed-up on scale-free networks.

8.4.3 COPs with incomplete tables

In our final set of experiments, we benchmark the performance of CUBE when
solving COPs involving incomplete tables. To this end, we consider the SPOT5
dataset [9], a standard dataset that models the problem of managing an Earth
observing satellite as a Weighted Constraint Satisfaction Problems (WCSPs) [21,
99], to maximise the importance of the captured images, while satisfying some
feasibility constraints. WCSPs can be seen as a particular case of COPs, and they
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Fig. 8.13: Speed-up on grid networks.

involve incomplete tables, hence requiring the use of the techniques discussed in
Section 8.2. The main objective of these experiments is to evaluate the speed-
up that can be achieved adopting our parallel approach, which is compared to a
completely sequential BE version that uses a näıve implementation for the join
sum and the marginalisation operations. This choice is motivated by the fact that,
to the best of our knowledge, none of the parallel implementations for the ⊕ and
⇓ operators available in the literature can handle incomplete tables. In addition,
representing these instances with complete tables is not feasible as they exceed the
memory capabilities of our machine.24

Table 8.3 shows the runtime in seconds (including preprocessing and data trans-
fers) needed to solve the instances of our reference domain by CUBE compared
to its sequential version, i.e., BE. Such table also reports the number of variables
and the induced width of these instances. The results show that CUBE provides a
speed-up of at least 2 orders of magnitude with respect to the sequential algorithm,
by reaching a maximum of 696.02×. Such speed-up increases consistently with the
size of the instances (i.e., the induced width and the number of variables), showing
that the proposed approach correctly exploits the increased amount of parallelism
in bigger tables. In fact, the speed-up provided by CUBE monotonically increases
in the first three WCSP instances (i.e., 54, 29 and 404), in which both the number
of variables and the induced width increase. On the other hand, such speed-up
decreases in instance 503, which, despite having a larger number of variables, is
characterised by a lower induced width. Recall that the induced width encodes
the complexity of the problem (see Proposition 2.15). The ability of our method
of handling large tables is crucial in this scenario. In fact, 5 out of 7 instances
(i.e., 404, 503, 42b, 505b and 408b) cannot be solved without this feature, as their
tables exceed the amount of GPU memory.

24 For this reason, we could not adopt the SPOT5 dataset for the tests in Section 8.4.2.
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54 29 404 503 42b 505b 408b

Variables 67 82 100 143 190 240 200
Induced Width 11 14 19 9 18 16 24
CUBE Runtime 3.01 5.36 12.40 17.46 58.42 77.17 120.79

BE Runtime 965.66 2656.72 7584.12 6347.98 31637.91 53710.41 76456.15
GPU speed-up 321.03× 495.38× 611.67× 363.63× 541.55× 696.02× 632.97×

Table 8.3: WCSPs results (time values are in seconds).
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A COP model for Graph-Constrained Coalition
Formation

In this chapter we propose COP-GCCF [12], a novel formalisation of the GCCF
problem, which allows us to employ the CUBE algorithm discussed in Chapter 8.
By doing so, we aim at exploiting the benefits of GPU parallelisation for the
solution of such problem. Furthermore, COP-GCCF allows us to deal with some
limitations of the approaches proposed in Chapters 4 and 6. On the one hand, DFS-
based approaches are difficult to parallelise [94], as discussed in Chapter 8. On the
other hand, COP-GCCF does not require any assumption on the characteristic
function, hence allowing us to solve completely general GCCF instances.

Now, as detailed in Section 2.1, GCCF is essentially an optimisation problem
(aiming at maximising the sum of the coalitional values) subject to feasibility
constraints (i.e., coalitions must be feasible and disjoint). Nonetheless, to the best
of our knowledge none of the constrained optimisation techniques present in the
literature [33] has ever been applied to GCCF.

Against this background, COP-GCCF is the first approach that models GCCF
as a Constrained Optimisation Problem (COP). Within COP-GCCF, we exploit
the structure of the graph so to achieve a model of manageable complexity. Specif-
ically, we propose a formalisation of the COP that builds a hierarchy of agents
resulting in a linear number of constraints (with respect to the number of agents).
Furthermore, our model is devised to exploit the capability of CUBE of processing
incomplete tables (see Section 8.2), allowing us to avoid the explicit representation
of unfeasible configuration, hence achieving an improved memory footprint. This
feature is crucial for the solution of COPs involving large tables (such as COP-
GCCF), which would not be tractable if represented adopting complete tables.

9.1 Variables

Our COP model for the GCCF problem comprises |FC (G)| binary variables, i.e.,
one per feasible coalition. Formally, X = {xS | S ∈ FC (G)}. The computation of
X involves the enumeration of all the subgraphs of G and can be solved using one
of the existing techniques in the literature [107, 117]. We use the SlyCE algorithm
by Voice et al. [117], which also provide a parallelised version, i.e., D-SlyCE.
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9.2 The simple approach

The most simple and natural approach to formalise GCCF as a COP would be
to represent each feasible coalition structure CS ∈ CS (G) with a variable assign-
ment in which xS = 1 if and only if S ∈ CS, and map such an assignment to
a value equal to V (CS). Intuitively, each xS set to 1 enables the corresponding
coalition S, and adds v (S) to the value of the assignment. This approach requires
to specify a number of constraints in order to allow only the variable assignments
that correspond to valid partitions of A, i.e., valid solutions of the GCCF problem.
Specifically, a set of coalitions S is a valid partition of A if each agent is part of
exactly one coalition, or equivalently:

Property 9.1. There are no overlapping coalitions in S, i.e., @S, S′ ∈ S : S∩S′ 6= ∅.

Property 9.2. Each agent in A is part of a coalition in S, i.e.,
⋃
S∈S = A.

Despite being a valid representation of the GCCF problem, the above COP would
be impractical to our purposes, as it would result in a very large number of con-
straints, an hence, would be too complex1 to solve with existing COP techniques,
including CUBE. Specifically, Property 9.1 would require one binary constraint for
each couple of variables in X, i.e., |X|·(|X|−1)/2 binary constraints, each verifying
that the variables in its scope are not both set to 1 if the corresponding coalitions
overlap, while Property 9.2 would lead to 2|X| n-ary constraints, i.e., one for each
subset of variables controlling that the corresponding coalitions contain all the
agents in A. We now propose a different way to enforce Properties 9.1 and 9.2,
which results in a manageable number of constraints.

9.3 COP-GCCF

In this section we detail COP-GCCF, our COP formalisation of the GCCF prob-
lem. In the remainder of this chapter, we discuss our approach referring to the
example in Figure 9.1. Within COP-GCCF, we exploit the structure of the graph
G in order to reduce the number of constraints necessary to ensure the correctness
of the model. First, we construct a pseudotree PT (G) [89] from G, establishing a
partial order among the agents in A.

Definition 9.3 (pseudotree). A pseudotree PT (G) of a graph G is a rooted tree
with the same nodes as G and the property that adjacent nodes from the original
graph fall in the same branch of PT (G).

PT (G) is a Directed Acyclic Graph, in which edges are directed from children
nodes to parent ones. Back-edges, i.e., edges present in G but removed from its
tree representation, are marked with a dashed line. Then, we partition the set of
variables X in n sets Xi, each corresponding to ai ∈ A, such that

Xi = {xS | S contains only ai or its descendants in PT (G)}.



9.3 COP-GCCF 149

a1

a2

a3

a4

a1

a2

a3

a4

Fig. 9.1: Example graph G and the corresponding PT (G).

Each Xi represents the set of local variables to the agent ai. Here, X1 = {x1, x12,
x13, x123, x14, x124, x134, x1234}, X2 = {x2, x23}, X3 = {x3}, and X4 = {x4}.

As stated above, Properties 9.1 and 9.2 must be ensured in order to correctly
represent the GCCF problem. Property 9.1 requires that the activation of a par-
ticular variable/coalition excludes the activation of incompatible variables, i.e.,
variables whose concurrent activation would generate overlapping coalitions. Now,
within COP-GCCF we enforce Property 9.2 among the variables in Xi, i.e., the
variables local to the agent ai, by constructing n constraint functions Fi (each
associated to Xi), and allowing only the assignments in which exactly one local
variable is activated (see Section 9.3.2). On the other hand, Property 9.1 cannot
be directly enforced for variables that are local to different agents, i.e., that belong
to different Xi, and hence, to different constraint functions. Notice that introduc-
ing additional binary constraints between overlapping variables would lead to the
above discussed simple approach, resulting in |X|·(|X|−1)/2 constraints. In contrast,
we achieve this exploiting the concept of required variables.

9.3.1 Required variables

The main idea behind required variables is that the formation of a variable/coalition
xS ∈ Xi can be achieved exploiting the hierarchy induced by PT (G). Intuitively,
the agent ai can negotiate the formation process only with its children nodes, al-
lowing a more succinct representation of the problem and saving computational
resources. As an example, x1234 (local to a1) requires the participation of a2, a3,
and a4, but a1 can force the participation of a3 through a2. In other words, x1234

requires x4 and x23, which indirectly requires x3 through a2.
Formally, we represent such dependencies with the requires relation, denoted as

req (PT (G)) ⊆ X2, i.e., a set of couples of variables. Figure 9.2 illustrates such re-
lation corresponding to the above example. Intuitively, if (xS , xS′) ∈ req (PT (G)),
it means that xS requires xS′ . In terms of variable assignments, the requires re-
lation acts as an implication, i.e., xS = 1 =⇒ xS′ = 1. Notice that, as a
consequence, if xS requires xS′ and xS′ requires xS′′ , the activation of xS results
in the activation of xS′′ , i.e.,

∀xS , xS′ , xS′′ ∈ X : (xS , xS′) ∈ req (PT (G)) and (xS′ , xS′′) ∈ req (PT (G)) ,

xS = 1 =⇒ xS′′ = 1. (9.1)

1 The number of constraints is closely related to the induced width of the constraint
network, which encodes its complexity (see Proposition 2.15).
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Due to the above property, requires exhibits a property similar to transitivity.
On the other hand, we construct such a relation in a way such that if (xS , xS′) ∈
req (PT (G)) and (xS′ , xS′′) ∈ req (PT (G)), then (xS , xS′′) 6∈ req (PT (G)), hence,
strictly speaking, requires is not a transitive relation. This choice is motivated by
the fact that the amount of required variables directly determines the scopes of the
constraints within COP-GCCF (see Section 9.3.2), hence including the additional
couple (xS , xS′′) in req (PT (G)) would be redundant, since the relation between
such variables is still expressed by the property in Equation 9.1.

Definition 9.4 (indirect requirement). A variable xS∈X indirectly requires
xS′′∈X if ∃xS′∈X such that (xS , xS′)∈req (PT (G)) and (xS′ , xS′′)∈req (PT (G)).

Notice that any required variable xS′ activated as a result of the requires relation
does not correspond to the formation of the coalition S′.

x1 x13 x123 x1234 x12 x124 x134 x14

x23 x2

x3

x4

X1

X2

X3

X4

Fig. 9.2: The requires relation (indirect requirements drawn as dash-dotted lines).

Given an agent ai and a local variable xS representing the coalition S, its required
variables are computed with Algorithm 23, which iterates over the children of ai
(line 2) and computes the required variables relative to each child with the recursive
routine in Algorithm 24. As an example, we compute the variables required by
x1234 with such algorithms. The first iteration of the loop in Algorithm 23 refers
to the first child of a1, i.e., a2. Within the corresponding invocation of RecReq,
S∗ = {a2, a3}, resulting in the required variable x23. Notice that the inner RecReq
call returns ∅, since {a1, a4} ∩PT3 = ∅. Similarly, the second iteration of the loop
(i.e., the one for a4) yields the required variable x4. Note that x1234 indirectly
requires x3, since x23 requires such variable.

Algorithm 23 ComputeReq (S, ai, PT (G))

1: reqS ← ∅ {Initialise empty set of required variables}
2: for all aj children of ai do
3: reqS ← reqS ∪RecReq (S, aj , PT (G))

4: return reqS
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Algorithm 24 RecReq (S, aj , PT (G))

1: reqjS ← ∅
2: PTj ← agents in the subtree of PT (G) rooted in aj
3: if S ∩ PTj = ∅ then
4: return ∅
5: else
6: S∗ = arg max{xS̄∈Xj | S̄⊆(S∩PTj)}

∣∣S̄ ∩ S∣∣
7: {xS∗ is the variable in Xj , strictly composed of agents}
8: {in S ∩ PTj , with the maximum intersection with S}
9: for all ak children of aj do

10: reqjS ← reqjS ∪ {xS∗} ∪RecReq (S \ S∗, ak, PT (G))

11: return reqjS

The fundamental characteristic of required variables is that any two variables that
require the same variable cannot be enabled simultaneously. Generally, since we
cannot activate two variables both local to the same agent, two variables that
require variables local to the same agent cannot be active at the same time, i.e.,

∀xS , xS′ ∈ X, ak ∈ A : ∃xS′′ , xS′′′ ∈ Xk : (xS , xS′′) ∈ req (PT (G))

and (xS′ , xS′′′) ∈ req (PT (G)) =⇒ ¬ (xS ∧ xS′) . (9.2)

By enforcing Equation 9.2, we ensure that no overlapping variables local to dif-
ferent agents are activated at the same time. Proposition 9.6 proves that such
property holds within COP-GCCF.

As background for such proof, we first prove Lemma 9.5, that ensures that
any variable, local to an agent ai, and involving an agent ak descendant of ai,
requires a variable local to ak, possibly by indirect requirement. In the example
in Figure 9.2, x13 (local to a1) corresponds to a coalition containing a3, which is
a descendant of a1. As a consequence, x13 requires a variable local to a3, i.e., x3.
On the other hand, x123 indirectly requires x3 through x23.

Lemma 9.5. Given a variable xS ∈ Xi, i.e., local to ai, such that ak ∈ S, where
ak is a descendant of ai in PT (G), it exists a variable xS′ ∈ Xk, i.e., local to ak,
such that xS requires xS′ , possibly by indirect requirement.

Proof. Let aj be the child of ai such that ak ∈ PTj , i.e., ak is a descendant of
aj , and consider the routine call RecReq (S, ai, PT (G)) at line 3 of Algorithm 23
corresponding to aj . We now show that RecReq (S, aj , PT (G)) either falls into
a base case (directly proving this lemma), or into a recursive one. In such case,
we show that one of the inner recursive calls still verifies the hypotheses of this
lemma, hence recursively applying this proof to such call.

• Base case (aj = ak): line 6 of RecReq (S, aj , PT (G)) results in a coalition S∗

containing ak as the highest agent in such coalition, considering the hierarchy
induced by PT (G). Hence, xS requires xS′ = xS∗ , local to ak.



152 9 A COP model for Graph-Constrained Coalition Formation

• Recursive case (aj 6= ak): we distinguish between two cases:
– aj ∈ S: line 6 of RecReq (S, aj , PT (G)) results in a coalition S∗ containing

both aj and ak, since aj ∈ S and ak ∈ PTj . Notice that S \ S∗ at line 10
does not contain ak. Hence, xS requires xS′ = xS∗ , which is not local to
ak, but to aj . On the other hand, the recursive procedure that computes
the variables required by xS′ = xS∗ verifies the hypotheses of this lemma,
since ak ∈ S∗ and ak is a descendant of aj .

– aj 6∈ S: line 6 of RecReq (S, aj , PT (G)) results in ∅. In fact, since aj 6∈ S,
then aj 6∈ S ∩ PTj , and line 6 only considers coalitions local to aj (which
all contain aj) strictly composed of agents in S ∩ PTj , which does not
contain aj . Then, line 9 (which iterates over the children of aj) contains
one iteration referring to a child of aj who still is an ancestor of ak. Such
iteration recursively calls RecReq with the same S, since S∗ = ∅. Thus,
the hypotheses of the current lemma are verified.

Notice that both cases in the recursive step refer to agents aj (all ancestors of ak)
that are gradually closer to ak. Thus, the base case is eventually executed. ut

Proposition 9.6. Overlapping variables local to different agents cannot be acti-
vated at the same time, i.e., ∀xS ∈ Xi, xS′ ∈ Xj such that ai 6= aj, if S ∩ S′ 6= ∅,
then ¬ (xS ∧ xS′).

Proof. Let ak be an agent in S ∩S′. Notice that ak always exists since S ∩S′ 6= ∅.
As a direct consequence of how PT (G) is constructed, ak ∈ PTi and ak ∈ PTj ,
where PTh represents the set of agents in the subtree of PT (G) rooted in ah. Now,
since PT (G) is a tree, it follows that either ai ∈ PTj or aj ∈ PTi. Without loss
of generality, assume that ai is an ancestor of aj , i.e., aj ∈ PTi, and thus, ak is a
descendant of both ai and aj . By applying Lemma 9.5 to xS and xS′ , it follows
that xS and xS′ require variables both local to ak. Finally, Equation 9.2 ensures
that ¬ (xS ∧ xS′). ut

As an example, our technique ensures that x13 and x23 cannot be both set to
1, since they both require x3. In the next section, we show how to implement n
constraint functions that realise the above discussed concepts.

9.3.2 Constructing constraint functions

As mentioned in Section 9.3, COP-GCCF involves n constraint functions Fi, one
for each agent ai. Such an amount is dramatically lower with respect to the simple
approach previously discussed, i.e., n vs. 2|X|+ |X|·(|X|−1)/2 (cf. Section 9.2). Each
Fi is constructed according to the following definition.

Definition 9.7 (Fi). Each Fi is responsible for the variables local to ai, hence
we initialise the scope Qi of each Fi to include Xi. Then, to represent the re-
quires relation, we include all the non-local variables that require a variable in Xi.
Formally,

Qi = Xi ∪ {xS | ∃xS′ ∈ Xi : (xS , xS′) ∈ req (PT (G))}.
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The scope Qi of each Fi comprises Xi, i.e., the variables local to ai, plus all the
non-local variables that require a variable in Xi. Each Fi contains |Qi| feasible
assignments, i.e., one for each variable in the scope. Notice that, in our model,
we do not explicitly represent unfeasible assignments, since CUBE can process
incomplete tables, resulting in reduced memory requirements (see Section 8.2). The
variable assignment in each row is constructed by activating the corresponding
variable, namely xS. If xS is non-local, i.e., xS 6∈ Xi, we also activate the variable
required by xS. Then, for each assignment in which a local variable xS ∈ Xi is
activated, we define the corresponding value equal to v (S), while such value is 0
when a non-local variable is considered. This avoids the duplication of v (S) when
xS is propagated as a non-local variable across the constraint functions.

In contrast with CFSS (see Chapters 4 and 6), COP-GCCF does not make any
assumption on the characteristic function, allowing us to solve completely GCCF
instances. Figures 9.3–9.6 show the constraint functions (with non-local variables
highlighted in grey) corresponding to the example in Figure 9.1. Notice that, at
the moment, our model propagates several variables down the pseudotree. As an
example, X4 contains only one variable, but Q4 = X4∪{x1234, x124, x134, x14}. We
will show how to reduce this amount in the next section.

We now formally prove that COP-GCCF is correct, i.e., that the optimal solu-
tion of COP-GCCF is the optimal solution of the corresponding GCCF problem
(Theorem 9.10). First, we prove two necessary lemmas for such theorem.

Lemma 9.8. Property 9.1 holds within COP-GCCF.

x1 x12 x13 x14 x123 x124 x134 x1234 Value
1 0 0 0 0 0 0 0 v ({a1})
0 1 0 0 0 0 0 0 v ({a1, a2})
0 0 1 0 0 0 0 0 v ({a1, a3})
0 0 0 1 0 0 0 0 v ({a1, a4})
0 0 0 0 1 0 0 0 v ({a1, a2, a3})
0 0 0 0 0 1 0 0 v ({a1, a2, a4})
0 0 0 0 0 0 1 0 v ({a1, a3, a4})
0 0 0 0 0 0 0 1 v ({a1, a2, a3, a4})

Local

Fig. 9.3: Constraint function F1.

x2 x23 x12 x124 x123 x1234 Value
1 0 0 0 0 0 v ({a2})
0 1 0 0 0 0 v ({a2, a3})
1 0 1 0 0 0 0
1 0 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0 0 1 0

Local

Non-local

Fig. 9.4: Constraint function F2.
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x3 x134 x13 x23 Value
1 0 0 0 v ({a3})
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0

Local

Non-local

Fig. 9.5: Constraint function F3.

x4 x1234 x124 x134 x14 Value
1 0 0 0 0 v ({a4})
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0

Local

Non-local

Fig. 9.6: Constraint function F4.

Proof. Definition 9.7 guarantees that exactly one local variable is activated, and
that overlapping variables local to different agents are not enabled at the same
time, as a consequence of Proposition 9.6. As such, Property 9.1 holds within
COP-GCCF. ut

Lemma 9.9. Property 9.2 holds within COP-GCCF.

Proof. Each Fi only contains variable assignments in which exactly one local vari-
able is enabled. As such, assignments in which ai is not part of any coalition, i.e.,
the ones violating Property 9.2, are unfeasible and cannot be a solution. ut

Theorem 9.10. The optimal solution of COP-GCCF is the optimal solution of
the corresponding GCCF problem.

Proof. COP-GCCF ensures that the variable assignment produced as solution sat-
isfies Properties 9.1 and 9.2. Furthermore, such an assignment maximises the sum
of the values of the constraints (see Definition 2.9), which, in COP-GCCF, is the
sum of the values of the corresponding coalitions. As such, the solution of COP-
GCCF correctly represents the solution of the GCCF problem. ut

In what follows, we further improve our model by discussing how to reduce the
scope of constraint functions, so to improve the memory requirements of our ap-
proach while maintaining its correctness.

9.3.3 Reducing the size of constraint functions

Our method of constructing each Fi involves the addition to its scope of every
non-local variable that requires a local one. Now, line 6 of Algorithm 24 implies
that the set of required variables of a particular variable xS local to the agent ai
contains variables that are local to ai’s descendants, i.e., agents lower than ai in
the hierarchy induced by PT (G). As a consequence, the requires relation never
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a1

a2

a3

a4

(a)

a1

a2

a3

a4

(b)

x1234

Original

Improved

Fig. 9.7: Required variables for x1234 (original vs. improved).

involve variables that are local to the same agent. In contrast, if we could express
the same dependencies by using variables that are also local to ai, we could reduce
the amount of variables added to the scope of Fi, and hence, its size.

In our improved model, we achieve this by introducing a slight modification in
how the requires relation is expressed. As an example, notice that x1234, local to
a1, requires x23 and x4 in our original model, which belong to different branches in
PT (G) (Figure 9.7a). When this happens, we can augment each required variable
adding the considered agent (i.e., a1 in this example), obtaining x123 and x14 as
new required variables (Figure 9.7b).
This method is applicable only when we have more than one required variable.
In fact, if we applied it to the only required variable of x123, i.e., x23, we would
re-obtain x123. This modification allows us to greatly reduce the scope of the
constraint functions in COP-GCCF. In fact, notice that the new required variables
of x1234, i.e., x123 and x14, are both local to a1, in contrast with the original ones
that were local to a2 and a4. Thus, we can avoid adding x1234 to the scope of
F2 and F4, since it no longer requires x23 and x4. Furthermore, this improvement
does not affect the correctness of our model, since the new requires relation is
equivalent to the original one, as proven by the following proposition.

Proposition 9.11. The requires relation obtained with our improved technique is
equivalent to the original one.

Proof. Let xS ∈ Xi be a variable local to ai, and xS′ ∈ Xj a variable local to aj
child of ai, such that xS requires xS′ in our original model. Assume that, in our
improved model, (xS , xS′′) ∈ req (PT (G)), where S′′ = {ai} ∪ S′ is equal to S′

augmented with ai, as a consequence of our improved technique of constructing
required variables. Notice that, since S′′ contains {ai}, it is local to such agent.
Furthermore, S′′ cannot contain agents (apart from ai) that are not part of PTj ,
i.e., agents outside the subtree of PT (G) rooted in aj . Hence, aj is the only child
of ai that does not result in ∅ at line 3 of Algorithm 24 when we construct the
required variables for xS′′ . Instead, the invocation of RecReq (S′′, aj , PT (G))
yields S∗ = S′ as the result of the operation at line 6, since S′ is precisely the
coalition, strictly composed of agents in S′′∩PTj , with the maximum intersection
with S′′. Thus, (xS′′ , xS′) ∈ req (PT (G)). Now, since xS requires xS′′ , and xS′′

requires xS′ , then xS indirectly requires xS′ (see Definition 9.4) in our improved
model. Therefore, the requires relation obtained with our improved technique is
equivalent to the original one. ut
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x1234 x123 x23

Original

Improved

Fig. 9.8: Relationships among x1234, x123, and x23 (original vs. improved).

As an example, Figure 9.8 shows that we indirectly achieve the original dependency
between x1234 and x23 by means of a dependency with x123, since the relation be-
tween x123 and x23 is unchanged. Figures 9.9–9.12 show the constraint functions
obtained with our improved model considering the above example. It is clear that
our technique allows to greatly reduce the number of non-local variables (cf. Fig-
ures 9.3–9.6), reducing the total number of columns from 23 to 17 (i.e., −26%).

x1 x12 x13 x14 x123 x124 x134 x1234 Value
1 0 0 0 0 0 0 0 v ({a1})
0 1 0 0 0 0 0 0 v ({a1, a2})
0 0 1 0 0 0 0 0 v ({a1, a3})
0 0 0 1 0 0 0 0 v ({a1, a4})
0 0 0 0 1 0 0 0 v ({a1, a2, a3})
0 1 0 1 0 1 0 0 v ({a1, a2, a4})
0 0 1 1 0 0 1 0 v ({a1, a3, a4})
0 0 0 1 1 0 0 1 v ({a1, a2, a3, a4})

Local

Fig. 9.9: Improved constraint function F1.

x2 x23 x12 x123 Value
1 0 0 0 v ({a2})
0 1 0 0 v ({a2, a3})
1 0 1 0 0
0 1 0 1 0

Local

Non-local

Fig. 9.10: Improved constraint function F2.

x3 x13 x23 Value
1 0 0 v ({a3})
1 1 0 0
1 0 1 0

Local

Non-local

Fig. 9.11: Improved constraint function F3.

x4 x14 Value
1 0 v ({a4})
1 1 0

Local
Non-local

Fig. 9.12: Improved constraint function F4.
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9.4 Experimental evaluation

The main goals of our empirical analysis are i) to evaluate the performance of
COP-GCCF in terms of runtime and memory requirements and ii) to compare it
with DyCE, i.e., the state of the art algorithm to solve general GCCF, and with
IDPG, i.e., the only GPU implementation of an algorithm that solves CSG.

9.4.1 Experimental methodology

Following Voice et al. [117] and our experiments in Sections 5.4 and 6.4, we gen-
erate random GCCF instances considering three different network topologies, i.e.,
scale-free networks obtained with the Albert and Barabási [1] model with the m
parameter equal to 1 and 2, and subgraphs of a large crawl of the Twitter social
graph [69]. Similarly to Sections 5.4 and 6.4, G is obtained by means of a breadth-
first traversal starting from a random node of the whole graph, adding each node
and the corresponding arcs to G, until the desired number of nodes is reached [96].
Each feasible coalition has an uniformly distributed random value within [−10, 10],
while, for IDPG, unfeasible coalitions have a value of −∞.

We vary n within [20, 30],2 generating 20 random instances for each of the above
network topologies and solving each of them with the three considered algorithms.
For each n, we report the average and the standard error of the mean of such
20 repetitions. All our experiments are run on a machine with a 3.40GHz CPU,
16GB of memory and a GeForce GTX 680 GPU. For DyCE and IDPG, we used
the implementations provided by the respective authors.3

9.4.2 Runtime

In order to fully understand our results, it is important to notice that the complex-
ity of any GCCF problem is significantly influenced by the density of the graph G,
as a larger number of connections results in a larger number of feasible coalitions,
and, therefore, a larger solution space. For scale-free networks, density is directly
determined by the parameter m, which represents the number of edges incident
to each newly added node using the Barabási-Albert generation model. For Twit-
ter subgraphs, we verified that such topology results in a density equivalent to a
scale-free network with 1 < m < 2.

Figures 9.13–9.15 show the runtime needed to solve the GCCF problems con-
sidering the above discussed network topologies. Our approach outperforms DyCE
and IDPG on scale-free networks with m = 1 and Twitter subgraphs, computing
solutions up to 4 orders of magnitude faster than counterparts in the former sce-
nario, and 1 order of magnitude faster than IDPG in the latter one. For scale-free
networks with m = 2, our approach is one order of magnitude slower than IDPG,
but it computes solutions 2 times faster than DyCE for 30 agents. In general, our
results show that COP-GCCF outperforms DyCE in all the considered network
topologies, and it is one order of magnitude faster than IDPG when considering a
realistic dataset, i.e., Twitter.

2 DyCE and IDPG cannot solve instances larger than 30 agents due to their exponential
memory requirements.

3 The implementation of IDPG is available at https://github.com/idpg/idpg.

https://github.com/idpg/idpg
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Fig. 9.13: Runtime for scale-free networks with m = 1.
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Fig. 9.14: Runtime for Twitter subgraphs.

9.4.3 Memory

Figures 9.16–9.18 show the memory requirements of the considered approaches.
For COP-GCCF, we measure the size of the largest table generated during the
entire execution of the algorithm, while the memory requirements of DyCE and
IDPG are both Θ (2n), regardless of the network topology. Specifically, DyCE and
IDPG require 4 · 2n bytes, since coalitional values are stored as float values.
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Fig. 9.15: Runtime for scale-free networks with m = 2.

Our results follow the behaviour discussed in the previous section, i.e., the mem-
ory requirements of COP-GCCF are lower with respect to DyCE and IDPG for
scale-free networks with m = 1 and Twitter subgraphs. Specifically, the memory
consumption of our approach is 2 orders of magnitude lower in the former case,
and 1 order of magnitude lower in the latter one. For scale-free networks with
m = 2, COP-GCCF requires twice as much memory with respect to DyCE and
IDPG, due to the higher density of G that results in a larger number of variables.
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Fig. 9.16: Memory for scale-free networks with m = 1.
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Fig. 9.17: Memory for Twitter subgraphs.
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Fig. 9.18: Memory for scale-free networks with m = 2.
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Conclusions and future work

This thesis proposes novel solutions for several interesting problems in the field
of multi-agent systems, especially in the context of Graph-Constrained Coalition
Formation (GCCF). So far, such problem has never been applied to realistic con-
texts, and only on small-scale problems. For the first time, we show that GCCF
is a viable approach method for important real-world scenarios such as collective
energy purchasing and ridesharing, which are receiving a considerable amount of
focus within the AI community. Our solutions comprise both search and dynamic
programming techniques, in order to employ the best solution technique on the
basis of the nature of the characteristic function. In the former case, the proposed
approaches overcome the limitations of previous techniques, solving problems of
unprecedented scale. In the context of dynamic programming, we propose a new
parallelisation scheme that allows to benefit from the computational capabilities
of Graphics Processing Units (GPUs) in the solution of hard combinatorial opti-
misation problems. Furthermore, our contributions establish a clear link between
GCCF and COPs, which, to the best of our knowledge, has never been investigated
in the literature, and opens to the use of COP techniques for GCCF.

In particular, this thesis advances the state of the art in the following ways:

• We proposed CFSS, a branch and bound algorithm for GCCF that can compute
optimal and approximate solutions with quality guarantees for realistic large-
scale applications (i.e., more than 2700 agents).

• We proposed the first GCCF model for Social Ridesharing (SR), and we showed
that it can lead to significant cost reductions when benchmarked on large-scale
instances (i.e., with 2000 agents) using realistic datasets.

• We proposed PK, the first algorithm able to compute kernel-stable payments
in the context of large-scale SR, thanks to an improved computation scheme
that overcomes the shortcomings of previous algorithms.

• We proposed CUBE, a highly parallel implementation for the most compu-
tationally intensive operations of the Bucket Elimination algorithm. CUBE
adopts a novel technique that allows us to realise an optimal memory manage-
ment on GPUs, hence achieving a high computational throughput.

• We proposed COP-GCCF, the first COP model for GCCF of manageable com-
plexity. We solved such COP with CUBE, outperforming state of the art algo-
rithms on a realistic dataset, both in terms of runtime and memory.



162 10 Conclusions and future work

This thesis opens several new research possibilities, both in the short and in the
long term. On the one hand, we aim at studying other realistic GCCF scenarios
that can be modelled as m+ a functions, so to employ the CFSS algorithm.

One interesting example is represented by the work of Lappas et al. [70], who
focus on a task assignment context involving team of experts connected by a social
network. In particular, as discussed in Section 3.1, the authors tackle the problem
of forming a single group of agents, who collectively possess the skills to complete a
given task, and who minimise the communication costs within such group. Notice
that, similarly to the scenarios discussed in this thesis, the presence of the social
network constraints the formation of the group, as disconnected agents cannot
collaborate/communicate at all. A promising research direction involves addressing
this scenario from a GCCF perspective, by considering a set of multiple tasks and
partitioning the set of agents into feasible coalitions (i.e., that form connected
subgraphs of the social network), each able to complete a subset of the set of
tasks. In this context, each coalition corresponds to a value that considers both
the sum of the rewards associated to the completed tasks, and, following Lappas et
al. [70], the communication costs within the coalition. This characteristic function
clearly exhibits a m + a nature. On the one hand, the former component has a
superadditive behaviour, as bigger groups can complete more tasks, and hence,
receive higher rewards. On the other hand, communication costs are subadditive,
as already discussed in Section 5. Furthermore, notice that, similarly to Social
Ridesharing (SR), this scenario is subject to additional feasibility constraints, e.g.,
one tasks cannot simultaneously be assigned to more than one coalition, in order
to avoid the duplication of its reward. Such constraints can be easily integrated
into our search-based techniques, reducing the search space and improving the
performance.

In the context of SR, we plan to extend our approach by focusing on the
development of an online SR system, motivated by the inherent dynamic nature
of realistic ridesharing systems like Uber and Lyft. In this perspective, we aim
at the design of a SR model in which agents can join and leave the system over
an extended amount of time. Such a scenario suggests a solution scheme that
employs an offline method (e.g., SR-CFSS) at each time step. Myopic, short-sighted
solutions are then avoided taking into account future requests. This can be achieved
by means of virtual agents, i.e., agents who are not yet in the system, but could join
it in the future. Such information, which clearly exhibits a probabilistic nature,
could be provided by the history of previous requests. As an example, within a
urban scenario the majority of the commuters probably moves towards the city
centre in the morning, in order to reach their work places. On the other hand, it is
reasonable to assume an opposite trend at the end of the day, when people return
to residential areas. Uncertainty can also be included in the SR characteristic
function, so to express costs deriving from traffic.

With this respect, it would also be interesting to formalise the above scenario
as a Markov Decision Process (MDP) [45], and investigate the use of approximate
solution techniques [62] to deal with the computational complexity of such MDP
and calculate a good policy in a feasible amount of time.
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In the context of constraint optimisation, this thesis opens to the application of
the proposed GPU techniques to other algorithmic frameworks also based on the
composition and marginalisation operations discussed in Chapter 8. As an exam-
ple, these methods can be directly extended to Mini-Bucket Elimination (MBE)
(see Section 3.4), so to achieve the same benefits in terms of runtime speed-up.

In addition, a very interesting research direction is represented by the joint
application of Dynamic Programming (DP) and search-based techniques within a
hybrid solution method for large-scale COPs. Such an approach allows to overcome
the unpractical memory requirements inherent in DP while maintaining its bene-
fits in terms of runtime performance. In this context, Marinescu and Dechter [79]
proposed an algorithm that realises this scheme by employing MBE-based heuris-
tics to implement a branch and bound traversal of a particular search-tree, i.e.,
an AND/OR tree. The authors later improved such an approach by incorporating
a best-first strategy [78]. The successful use of such techniques for the solution of
realistic COPs warrants the application of GPUs in this context. Specifically, we
aim at studying if the employment of CUBE within the heuristic computation can
result in more precise bounds, so to improve the pruning of the search space and,
consequently, provide better performance.

Overall, this thesis proposes a novel way of employing MAS techniques, such as
CF, previously employed only in small-scale environments. Our contributions pave
the way to the use of these solutions and methods in realistic, large-scale scenarios,
which find application in contexts that are central for future developments of
the research within the AI community, such as computational sustainability. We
believe that our work provides a comprehensive set of tools that allows to address
these real-world challenges under a novel and exciting perspective.
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Sommario

L’ottimizzazione a vincoli rappresenta una tecnica fondamentale che è stata ap-
plicata con successo nell’ambito dei Sistemi Multi-Agente (MAS), con lo scopo di
risolvere numerosi problemi di coordinamento tra gli agenti. In questa tesi affronti-
amo il problema della Formazione di Coalizioni (CF), uno degli approcci chiave per
affrontare problemi di coordinamento nei MAS. In particolare, CF ha l’obiettivo di
formare gruppi che massimizzano una funzione obiettivo (e.g., formare macchine
condivise da più agenti in modo da minimizzare i costi di trasporto). Ci concentri-
amo su un caso particolare di CF denominato CF su Grafi (GCCF), dove una rete
tra gli agenti vincola la formazione delle coalizioni. Questo problema si riscontra
in molte applicazioni realistiche, ad esempio nel caso di reti di comunicazione o di
relazioni sociali. Nello specifico, i contributi principali della tesi sono i seguenti.

Proponiamo un nuovo modo di formalizzare il problema GCCF, e un algoritmo
efficiente (denominato CFSS) per risolverlo. CFSS è stato testato in contesti reali-
stici quali il collective energy purchasing e il social ridesharing, utilizzando dati
reali (i.e., profili di consumo energetico domestico del Regno Unito, GeoLife per le
coordinate di spostamento nell’ambito del ridesharing, e Twitter come rete sociale).
CFSS è il primo algoritmo in grado di risolvere GCCF su larga scala fornendo
buone garanzie di qualità.

In aggiunta, affrontiamo il problema di dividere il valore associato ad ogni coa-
lizione tra i suoi membri, in modo da garantire che siano ricompensati adeguata-
mente per il contributo apportato al gruppo. Questo aspetto di CF, chiamato
calcolo dei pagamenti, è cruciale in ambiti caratterizzati da agenti con un com-
portamento razionale, quali il collective energy purchasing e il social ridesharing.
Questo problema è risolto tramite il nostro algoritmo denominato PK, il primo
metodo in grado di risolvere questo problema su larga scala. In aggiunta, i paga-
menti calcolati soddisfano la proprietà derivante dalla teoria dei giochi chiamata
stabilità, che garantisce che tali pagamenti siano considerati imparziali dagli agenti.

Infine, proponiamo un metodo alternativo per la soluzione del problema GCCF,
sfruttando la relazione tra GCCF e i problemi di ottimizzazione a vincoli (COP).
In particolare, consideriamo Bucket Elimination (BE), uno dei framework più im-
portanti per la risoluzione dei COP, e proponiamo CUBE, un implementazione
parallela di BE su GPU. CUBE adotta uno schema della gestione della memoria
innovativo, che porta notevoli benefici dal punto di vista delle performance e per-



mette a CUBE di non essere limitato dal quantitativo di memoria della GPU, cos̀ı
da poter risolvere problemi di carattere reale. CUBE è stato testato su SPOT5,
un dataset realistico che contiene problemi di coordinamento tra satelliti modellati
tramite COP. Inoltre, CUBE è stato usato per risolvere COP-GCCF, la nostra for-
malizzazione tramite COP del problema GCCF. COP-GCCF è il primo modello
che comprende un numero lineare di vincoli rispetto al numero di agenti, carat-
teristica fondamentale per garantire la scalabilità della nostra tecnica risolutiva.
I nostri esperimenti, che utilizzano Twitter come dataset reale, dimostrano che
COP-GCCF apporta numerosi vantaggi rispetto allo stato dell’arte, sia in termini
di memoria e di runtime.

In generale, questa tesi propone una nuova prospettiva su importanti tecniche
nell’ambito dei MAS, quali CF e l’ottimizzazione a vincoli, permettendo di risolvere
per la prima volta problemi di carattere reale su larga scala.
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