
Università degli Studi di Verona
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Abstract – One of the main problems in the production and distribution
of energy is the inefficiency of its storage on a large scale. User energy
consumption usually follow a profile which provide local maxima during
some well known time periods (usually around 7:00 and 18:00), so ensuring
an adequate amount of energy in these particular moments is a critical
problem, since the production methods – i.e. power stations – are slow to
fire up and slow down and cannot follow properly the demand of the network.

This thesis aims at studying a method of forming groups of energy users
– called coalitions – in a way that minimizes such peaks. Having a flatter
profile let the formation buy the energy in a smarter way, since more of it
can be retrieved through the long-term market – the forward market – which
has cheaper prices and grants a monetary gain to the single users.

Since the number of possible ways to arrange this coalitions is expo-
nential in the number of users, a brute force attack would be infeasible, as
trying every possible solution would require too long for real-world sized
problems. However, the dimension of the space of solutions can be smartly
lowered considering additional constraints, which state if a particular result
can be considered valid or not. Social networks come as a great help in the
formulation of such constraints, providing knowledge-based relations among
users that can be exploited in the coalition formation procedure.

Such networks can be perfectly expressed as graphs, which can be an-
alyzed with many formal methods; in particular, we’ll focus on graphical
models, a powerful tool that will be used as base for a message passing al-
gorithm able to compute optimal and stable coalition in a distributed way.
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Chapter 1

Introduction

In the field of the generation and distribution of electrical energy, one of
the main difficulties faced by producers is the impossibility to store large
amounts of energy in an efficient way. Since the demand by the consumers is
not constant – rather, it usually has high peaks in some periods of the day,
typically in the morning and in the evening – matching the demand of en-
ergy in these particular moments is a critical engineering issue. In all current
electricity grids this balance is achieved by varying the supply-side to con-
tinuously match demand. The amount of demand required on a continuous
basis is usually carried by the baseload stations owing to low cost genera-
tion, efficiency and safety. However, these stations are slow to fire up and
cool down, so they are not able to match the peakload periods that exceeds
this baseload demand, which is then satisfied by using expensive, carbon-
intensive, peaking plant generators. Although only running when there is
high demand, these peaking plant generators are responsible for the most
part of consumers’ electricity bill and pollutant emissions.

To address this issue, current approaches envision demand-side peak-
shaving strategies such as real-time pricing or profile’s based tariffs to en-
courage consumption such that the peaks on demand are flattened. A flat-
tered demand results in a more efficient grid not only with lower carbon
emissions but also with lower prices for consumers. In this thesis, the prob-
lem of how the grid efficiency can be further improved from a social perspec-
tive is investigated. In particular, we explore the idea of allowing consumers
to join into coalitions with other consumers with complementary energy
needs. Then, a group of consumers can act in the market as a single vir-
tual consumer with a flattened demand for which it gets much better prices.
Specifically, having a regular energy demand profile has a twofold positive
effect: on the one hand it allows customers to buy the a consistent amount
of energy on a forward cheaper market thus saving on the electricity bill.
On the other hand a flatter energy demand is crucial to reduce the need of
peaking plant generators thus minimizing pollutant emissions.

9



1.1 Contributions

In more details, this thesis makes the following contributions:

• Implementation of a novel approach to stable coalition forma-
tion [71] – A novel approach to this problem is presented, describing
a GDL message-passing algorithm based on the work of Vinyals et al.,
which allows users to organize in optimal and stable coalitions in a
distributed way. In this context, optimality is intended as the max-
imization of the collective value for the entire system, also referred
as social welfare. Actually, the presented schema is the first in liter-
ature to deal with the goals of optimality and stability at the same
time, which are usually treated separately. In particular, we will de-
scribe a novel graphical model representation scheme for coalitional
games defined over graphs, and exploit this representation to devise
the first decentralized algorithm leading to the formation of stable
coalition structures. We remark that this technique, build upon well-
known message passing algorithms from the GDL family, represents
an important extension of previous seminal works [27], showing how
to treat general problems with cyclic graphs.

• Application of the implemented approach to a real-world case
study: the energy market – The mentioned theoretical notions and
solution techniques have been applied to a real-world case study: the
energy market. We will focus on a scenario in which a group of energy
customers, assumed to be organized in a social network, have a demand
of energy supplies (e.g. electrical power), and need to buy them in a
way that minimizes their costs, forming coalitions. As will be pointed
out, this setting has a natural modelization in coalitional game theory
in which players are considered to be selfish, thus setting us in a non-
cooperative environment. Real energy customers have little interest
in increasing system gain, as their main concern is to maximize their
own utility, with the simple goal of having a cheaper bill. Therefore,
the concept of stability assumes a key role, since it is not possible to
impose a solution “from above”, as it would be immediately rejected
by the agents. Rather, the goal is to find an appropriate distribution
of payments that incentives single energy customers to maintain the
current structure, as any deviation would worsen their payoff, making
energy more expensive.

• Implementation of a GUI for simulating coalition formation
in the energy market – The mentioned algorithm has been imple-
mented realizing a Java simulator, which has allowed us to verify the
correctness and the effectiveness of the theoretical hypotheses.

10



Moreover, the demonstration application permits the user to inter-
act with the coalition formation process and have detailed informa-
tions about the optimal outcome and the possible gains that can be
obtained. The platform generates a set of nodes, one per energy con-
sumer, and allows the user to modify the network by adding/removing
links in an easy way. Each node has an energy profile loaded from real
data characterizing the domestic electricity market and usage pat-
terns of households in the United Kingdom. Once the coalition for-
mation scenario is set, the simulation starts the GDL message-passing
algorithm, organizing energy consumers into stable optimal coalitions.
Upon convergence, energy consumers in the same coalition are colored
with the same color, showing detailed informations about the gain ob-
tained if the suggested solution is used. Finally, the interface also al-
lows to visualize the energetic profiles of coalition members. Each chart
plots a consumer energy profile and the joint coalition energy profile.
The GUI offers the user an effective way of restarting simulations after
reconfiguring the network topology, testing how the existence or the
nonexistence of a particular link affects the emerging coalitions and
consumers gain.

This application has been the subject of a demo paper submitted
at 11th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2012) [14] and is available for download as
an executable JAR file at http://profs.sci.univr.it/~farinelli/
energySCF.jar. Moreover an illustrative video, describing the simu-
lator and the related topics can be viewed at http://www.youtube.

com/watch?v=FT25oETMkfw.

• Definition of several metrics to evaluate coalitions in the en-
ergy market – The problem of a proper evaluation of coalitions is
covered by means of a complete analysis apt to appropriately choose
a metric to estimate how the considered coalition is suitable to users’
demands. As pointed out before, “good” coalition are groups whose
joint energy profile is flattened, because more energy can be bought in
a cheaper way on the forward market, so the metrics described have
the primary objective of quantifying this feature, attempting to assign
a smaller value to a profile with a peaky behavior, while encouraging
the formation of coalitions whose profiles are more regular. Moreover,
another eligible property of the metric is non-superadditivity. Intu-
itively, a setting is said to be superadditive if it is always profitable
for two teams to join forces and form an unique coalition, so there’s
no reasonable incentive for the agents to go alone. In the considered
context, it would imply putting every agent in the same group, making
everyone buying energy together, which is just not reasonable.
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Furthermore, in real-world environments the complex dynamics and
the increased coordination costs of bigger groups make the setting in-
trinsically non-superadditive. Specifically, two particular metrics have
been analyzed: the load diversity factor, which captures the “smooth-
ness” of a given energetic profile, and the user price factor, which
gives an estimation of the final cost of the electricity bill, assuming
a baseload amount of energy is bought on the long term market at a
cheaper price, obtaining the remaining part on the day-ahead market.

• Empirical evaluation – The simulator has been used to make an
extensive set of empirical experiments (covered in details in Section
1.3), which have confirmed the correct behavior of the GDL message-
passing algorithm. Various aspect of the considered problem has been
analyzed, inspecting how different metric configurations and graph
topologies affect the coalition formation process, in terms of size of
coalitions and average gain obtained by the agents. In particular, the
variation of the prices in the forward and day-ahead market and its
influence on the experimental results is addressed.

1.2 Algorithm outline

From a general point of view, the presented GDL-based algorithm works in
two phases: assuming a pre-existing hierarchy among the consumers, agents
at lower levels progressively communicate their demands, in terms of ex-
pected payments they require in order to join a given coalition. These de-
mands are treated as messages exchanged among agents, used to choose the
appropriate coalition structure satisfying everyone’s requests (if possible).
In general cyclic graphs, this schema is iterated multiple times (linear in
the number of agents): intuitively, at each step one single agents fixes his
decisions and leaves the computation, which subsequently runs on a smaller
problem.

The algorithm exploits the structure of the problem by means of a par-
ticular graph, which models the connections among agents and define con-
straints over the considered problem. Specifically, social networks capture
the knowledge relations existing between users and restrict the number of
possible coalition structures to investigate, significantly improving the com-
putational complexity of the process. In particular, consumers may not want
to join coalitions with unknown consumers for which they do not have any
source of trust regarding their reported profiles or their capacity to meet
their payment obligations. In contrast, if the social network is used to re-
strict coalition membership, customers join coalitions of friends of friends,
thus being sure that someone they know directly is always involved.

12



Upon convergence, the algorithm returns a stable outcome (if existent), in
a sense that users are not incentivized to deviate from the found equilib-
rium, since it already rewards them with the best payment they can indi-
vidually achieve. Any alteration of the proposed coalitional structure is not
convenient for the agents, as it would represent an actual loss in terms of
obtained value. This is a fundamental issue to be addressed, since in real-
world settings the agents interacting are intrinsically selfish, thus they are
only interested in maximizing their own utility. More formally, the proposed
solution can be proved to belong to the core of the game, defined as the set
of all stable solutions.

1.3 Experimental analysis

As mentioned above, a comprehensive set of empirical experiments has been
conducted to test the performance of the presented coalition formation tech-
nique. In particular, the analysis focuses on two fundamental features of the
solutions: the average user gain and the coalition structure. Intuitively, av-
erage user gain refers to the effective gain users have obtained adopting
the coalition organization proposed by the given outcome, with respect to a
naive solution where only single coalitions are formed. In particular, to inves-
tigate the sensitivity of the coalition formation process with respect to the
underlying network topology, we have evaluated our model on three different
network models (random, scale-free and small-world networks). Moreover,
each topology has been parametrized using different density levels, repre-
senting the amount of connections with respect to the number of nodes.
Furthermore, the above mentioned features have been interpreted studying
the correlation with various metric configuration, simulating different price
situations and considering different approaches adopted by the consumers
with respect to the risk.

We remark that, as an additional sanity check, all the results have been
tested with an alternative technique, verifying the coherence of obtained
solutions. In particular, the same coalition formation problem has been for-
malized using linear constraints and solved using IBM ILOG CPLEX Op-
timization Studio, which currently represents the state of the art in linear
programming optimization.

1.4 Results

This work gave many promising results: the presented method is effectively
able to compute coalitions, granting various benefits both for single energy
consumers, who can save on their electricity bills, and for the entire system,
in an ecological perspective.

13



Due to the reduction of peaks in the aggregate energy profiles, the demand
of peaking plant generators – responsible of most of the pollutant emission
in the energy production – can be limited, with a promising environmental
effect. In addition, the metrics proposed (especially the user price factor)
have proven to be very effective in the tests, being able to effectively cap-
ture the quality of good solutions and generating an interesting variety of
results. Finally, based on these results, we performed an analysis on how dif-
ferent market configurations and input graphs topologies affect the coalition
formation process.

1.5 Thesis outline

This thesis is structured in the following way: Chapter 2 gives a brief outline
of the related work which previously addressed similar topics in literature.
Chapter 3 formally defines the theoretical basis of coalitional game theory,
which are used in Chapter 4 to extensively describe the mentioned GDL
message-passing algorithm. This technique is then applied to a real-world
case study: the energy market, as depicted in Chapter 5, in which we also
describe the demonstration application. Chapter 6 reports and discusses the
extensive set of experiments we performed to analyze the various aspects of
the considered problem. Finally, Chapter 7 concludes the work and highlights
possible directions of future work in this area.

14



Chapter 2

Related Work

In this chapter we’ll briefly discuss the coalition formation activities un-
dertaken when agent in a multiagent system come together to form teams.
This problem is known as coalition structure formation, which can be di-
vided in two main categories: coalition structure generation activities refer
to the context in which agents are collaborative and willingly agree to co-
operate to fulfill the agenda of a single designer; on the other hand we have
coalition formation activities by selfish rational agents, in which agents are
selfish entities whose interest is only maximizing personal interests.

We’ll now discuss both scenarios, describing the main properties and
the techniques that can be applied to solve the problems [22]. All topics are
presented in an informal way, leaving specific concepts and formal definitions
to Chapter 3, where everything will be defined precisely.

2.1 Coalition Structure Generation

The context of the coalition structure generation is entirely based on a very
strong hypothesis: the agents will be considered to be fully cooperative and
to work together with the common goal of maximizing the gain for the entire
system.

For example, the whole environment could be “owned” by a single de-
signer, following its will and making the performance of single agents less
important than the social welfare of the system (considered to be the sum
of the values of single coalitions).

Obviously, finding the optimal solution is straightforward if the consid-
ered game is superadditive: when this happens, it is always profitable for two
teams to join forces and form an unique coalition, so there’s no reasonable
incentive for the agents to go alone; instead, the grand coalition will always
form, grouping all players.

A formal definition of superadditivity and related notions will be given
in Section 3.3.
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Nevertheless, it will be shown that many important environments (included
the energy market domain) are not superadditive. Therefore, the problem of
finding the best partition of agents in teams in non-superadditive settings is
referred as coalition structure generation, which has been extensively studied
in literature.

Most of these approaches assume that the game is represented by the
list of possible coalition together associated to a value – representing how
“good” that solution is – or by an oracle. However we remark that algorithms
for coalition structure generation have been recently developed, taking ad-
vantage of specific succinct representations (synergy coalition groups [50],
skill games [9], or games with a constant number of agent types [7]).

Note that an enumeration-based approach is not possible in this par-
ticular field, since the number of coalition structures is exponential in the
number of agents n, and it’s huge even comparing it to the number of coali-
tions, which is 2n. This dimension is represented by the Bell number Bn [11],
which can be shown to be greater than nn. This implies that the direct enu-
meration would require super-polynomial time considering the naive repre-
sentation of a game, leading the scientific community to change the approach
for the research of solutions.

2.1.1 Dynamic Programming

The use of dynamic programming for the generation of coalition structure
[59] can be explained very well considering the notion of superadditive cover,
in which the value of each coalition is the social welfare of the best coalition
structure that the member of the considered group can form. It can be shown
that finding the optimal coalition structure can be effectively obtained via
standard dynamic programming techniques.

Computing the optimal social welfare value v∗(C) is possible by progres-
sively computing the value of smaller coalitions, starting from the 1-sized
ones (whose optimal value is simply the value of the coalition itself, since
there’s an unique coalition structure). For bigger coalitions, one proceeds
to split the considered one into two disjoint non-empty groups C ′ and C ′′,
selecting the one that maximizes v∗(C ′)+v∗(C ′′). Note that these coalitions
are smaller, meaning that their optimal values have already been computed.
The results is finally given by the comparison of this sum with the entire
coalition v(C), since the non-empty disjoint assumption prevents considering
the whole group.

The running time of this algorithm is exponential in the number of agents
n, since the number of possible ways of possible of size k is given by

(
n
k

)
,

and for each one there are 2k−1 − 1 possible ways to split it into two non
empty coalitions. Nevertheless, this is a lot smaller than nn, meaning that
this method avoids searching the entire solution space. However, dynamic
programming is still too slow for real-world applications.
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2.1.2 Anytime Algorithms

Sandholm [60] showed that is possible to find a coalition structure that is
within some provable bound from the optimal one through an approximation
algorithm.

The idea is to establish a graph organizing all possible coalition struc-
tures resulting from a game with n agents in n levels, such that level i
contains all the solution formed exactly by i coalitions. Thus, at the first
level we always find the grand coalition, since it is the only configuration
containing one coalition, while the n-th level has the solution formed by the
singletons.

Two nodes of this particular graph are connected if it is possible to obtain
one configuration from the other only by splitting one coalition in two. For
example, there will be an edge between configurations {{1}, {2}, {3}} and
{{1}, {2, 3}}. Given this constraint, only nodes from adjacent levels will be
connected.

One interesting – provable – property of this particular graph is that
every possible coalition appears in the first two levels; obviously this doesn’t
hold for coalition structures.

Exploring the entire graph doesn’t provide any advantage over the naive
enumeration approach, but if we restrict the search to the first two levels we
can find a solution whose value is within a factor of 1

n from the optimal.

So we can begin our research starting from the bottom and keep track of
the best solution for i = 1 and i = 2; if we have more computational time to
spend, we refine our solution starting from the current one and proceeding
with a breadth-first strategy, always saving the best available result. This
process can be stopped as soon as the available running time for the research
is over, or else we have visited all the remaining parts of the graph.

Experimentally, this approach has been shown to perform quite well, and
it has the advantage to be anytime – i.e. it guarantees to provide incremen-
tally better solution if given more time or computational resources. Note,
however, that exploring the first two levels is not trivial and quite expensive:
2n−1 coalition structures are contained only in level 2.

Some refinements and improvements were made by Dang and Jennings
[26], and Rahwan [56], who replaced the coalition structure graph and ap-
plied particular search techniques, such as branch and bound.

Interestingly, the aforementioned dynamic programming approach suits
very well to the presented graph representation: it first evaluates every pos-
sible movement in the graph, and then moves from a node upward until
an optimal one is reached, after which no further computation is beneficial.
Not every edge in the graph is needed to find the best structure, as long as
there’s a path leading to it. This observation is the basis of the work pro-
posed by Rahwan and Jennings [54], who improved these approaches letting
the algorithms use less time and memory.

17



A further step was the presentation of hybrid improved dynamic program-
ming [55], which adds a preliminary step at the beginning of the algorithm
to prune the less promising parts of the space search, making the subsequent
parts significantly faster than both of its ingredients.

A different way to combine anytime algorithms and dynamic program-
ming is proposed by Service and Adams [62], whose approach relies on an
approximation scheme, i.e. a family of algorithms with the running time
based on the desired approximation ratio.

2.2 Stable Coalitions

The topics discussed so far implicitly assume that cooperative agents can
be grouped into teams by a central computational unit, which aims to form
coalitions that maximize the social welfare. This is not the case in many
real-world problems, in which agents’ only interest is to maximize their own
utility – that is why they are referred as selfish. Though they accept to work
with others, their primary objective is to get as much as possible out of
some kind of contract. One important application, that will be covered in
detail in Chapter 5, is the energetic market, in which the single users may
be interested in the improvement of the social welfare (e.g. for ecological
purposes), but their main goal is the minimization of the cost they have to
pay for the energetic contract.

One fundamental notion related to the field of coalition formation with
selfish agents is the concept of core, which we will formally defined in Section
3.4.1. The core represent the set of stable solutions, i.e. all the outcomes for
which the users are not interested in deviating from the given structure,
since their own demands are already satisfied. Optimal solutions out of this
particular set are not interesting, since they would be altered as soon as
possible by the selfish players of the game.

Thus, in this section we’ll cover coalition formation activities that deal
with this kind of agents.

2.2.1 Bargaining Approach

In some formulations, agents can establish some explicit negotiations as part
of a bargaining process in order to form groups. When coalition bargaining
procedures happen, the game can be seen as a (non-cooperative) one [37,45,
52]. A wide variety of examples has been provided in literature [13, 24, 30,
33,51,53,61,74], we’ll briefly examine some representative examples.

Okada [51] proposed a model in which at every round of bargaining a
proposer chosen randomly makes an offer for a given coalition and a linked
payoff vector. If the proposal is accepted, the mentioned coalition abandons
the negotiation process. At every round, the value of the remaining coalitions
is lowered by a fixed value.
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Okada then characterizes subgame-perfect equilibria (SPE1), showing that,
if the SPE are considered to be stationary and the proposer is chosen ran-
domly and uniformly at each round, every proposal made in round one is
immediately accepted by the interested agents with no delay. The stationary
hypothesis is responsible of the property that every proposal and response
done during a certain round is based only on the active set of agents in
that particular instant, and is uncorrelated to the past history; with this
assumption, the equilibrium proposals and responses of the players are con-
sidered the solution to a payoff maximization problem. Note that, as shown
by Chatterjee [24], if a fixed proposal order is given (discarding the random
and uniform hypothesis), a delay of agreement in equilibrium can effectively
happen.

Moldovanu and Winter [13] approach changes the order of proposals,
which is based upon responders’ replies; the first agent to refuse an offer
becomes the next initiator, which can propose a coalition and a payoff vector
to its members, but can also pass the initiative to another player. Similarly
as seen before, when an offer is accepted, the given coalition abandons the
game, but there’s no discount of values over time. Moldovanu and Winter
focus on SPE too, showing that if the bargaining strategy is an ordered
independent equilibrium (OIE), the resulting payoff must be in the core. On
the other hand, if the considered game has subgames with non-empty cores,
then for each payoff vector there exists an OIE with the same payoff

As pointed out, the concept of core is very important in the field of
bargaining procedures, since it has been shown that many other bargaining
procedures mentioned in literature converge to outcomes in the core under
certain hypotheses [13,30,33,53,61,74].

2.2.2 Dynamic Coalition Formation

If the context we’re dealing with does not permit considering a sequential
bargaining process, the aforementioned techniques cannot be applied. Po-
litical and market alliances in a “fluid” environment provide an example.
Coalition structures can be modified due to a wide variety of internal and
external factors – agents abandoning or joining the system, fluctuation in
the computational and communication ability of the partners – making the
whole scenario dynamic.

A first approach to this topic has been made by Shehory and Kraus [63],
who considered a (non-bargaining) three-stage process, in which the values
of potential coalition are computed in the first stage in a distributed way.
A particular protocol takes care of this, ensuring that every agent knows
the capabilities of the potential partners and determining how players may
approach each other.

1SPE is a strategy profile whose restriction to any subgame following any history in
the game is in equilibrium w.r.t. that particular subgame [45,52]
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Subsequently, a greedy phase follows, in which every agent chooses from the
pre-computed values the one that best suits its own needs. Finally, these de-
cisions are broadcasted to the system, notifying every user with the benefits
of forming certain coalitions.

Since this method is exponential in the number of agents, particular
heuristics can be used to reduce the amount of communication messages
(e.g. bound the size of each coalition by a small constant).

Arnold and Schvalbe [4] extended the study of coalitional stability in
dynamic coalition formation, making use of a Markov process model. At
each stage, the state is represented by a particular coalition structure and a
associated allocation of payoffs, or demands. Then, with a probability of γ,
every agents decides if it wants to move from the current configuration and
try to obtain a better payoff, in which case the behavior is described by a
“non-cooperative best-reply-rule”: a player decides to change its situation if
its expected payment under ideal condition exceed its current payoff, and its
demand is the highest possible fulfilling feasibility constraints. The process
follows some sort of “evolution” by the agents adjusting their coalitions and
demands as long as changes are feasible. The presented process is shown to
have at least one state of equilibrium – Arnold and Schvalbe showed that if
the core isn’t empty, exactly one of them exists for every core allocation –
which will be reached with certainty.

Konishi and Ray [40] presented similar approach, in which the change
from the current state (with consequent coalition structure and payoff mod-
ifications) is done only if it’s profitable for every member of the group.
Everyone of them agrees about the probability with which state transi-
tion may occur. Augustine [5] focused on the dynamics of coalitional games
with submodular2 characteristic functions under three natural profit-sharing
models, in which agents are divided into groups and are paid according to
a pre-defined profit-sharing scheme. They may want to deviate from this
configuration myopically, aiming to increase their payoff.

Sycara [44, 68] adopted a task-oriented approach in the multiagent sys-
tem community, developing the Reusable Environment for Task Structured
Intelligent Network Agent (RETSINA) framework. RETSINA distributed
system supports heterogeneous agents to join and leave the environment
dynamically, which may cooperate and work together in order to execute
tasks.

2.2.3 Dealing with Uncertainty

All the approaches described so far make the implicit assumption that the
values of coalitions are known with certainty, but in real situations a variety
of parameters can make this hypothesis unreasonable to be made.

2A function is said submodular if and only if f(A ∪B) + f(A ∩B) ≤ f(A) + f(B)
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Players can be unsure about the capabilities of the partners – either in terms
of computational and communication power – or if they intend to use them,
there can be unexpected obstacles and failures, and so on.

Uncertainty about resources

Ketchpel [38] started dealing with these topics specifying a two-agent proto-
col to permit coalition formation in the face of uncertain rewards. Kraus [43]
focused on a scenario where the players have incomplete information about
each other, and have to establish a bargaining process in order to decide
how to share a joint resource. Every agent keep track of partners’ responses
to offers and consequently update their beliefs, defining a type – chosen in
a finite predefined list – for each member of the system, which has its own
utility function based on the resource usage. Since every resource is con-
sidered shareable among a maximum of two users, the negotiations in any
given period are bilateral : one user is currently holding the resource during
the protocol execution, while the other is waiting to have access to it.

Shehory and Kraus [63, 64] also dealt with problem in which the capa-
bilities of single users are not fully known. An estimation is required by
every agent, which is based upon the information sent by their potential
partners. In [64] an algorithm for payoff allocation is presented, assuming
a non-cooperative game placed in a non-superadditive environment. She-
hory [65] developed a similar approach using the RETSINA framework to
implement a coalition formation algorithm using agent collaboration. This
work focuses on maximizing social welfare, thus it does not cover payoff
allocation issues.

Kraus [41, 42] also focused on coalition formation in the “Request for
Proposal” domain. In this particular formulation, agents are forced to com-
plete a set of tasks, each comprised of sub-tasks – each of which must be
performed by a different user. The effort taken by an agent to execute a
sub-task may be unknown to others, but they do know the overall payoff
associated to the complete task. The allocation of the single sub-tasks is
done by an auction, in which agents use heuristics to form teams in order to
bid. In [41] a democratic division of total payoff is assumed, which does not
necessarily encourage single agents declaring the actual effort they spent in
the performance of their sub-tasks. The subsequent work [42] covers vari-
ous payoff allocation strategies, going from a simple proportion with agents’
costs to a compromise-based approach, where the agents may be willing to
receive lower payoffs as long as they join a coalition. This approach per-
formed well in the tests, showing that compromises facilitate the formation
of successful groups, but some improvements are still possible: agent are
expected to behave exactly as listed in the paper and deviation are not con-
sidered; also iterative coalition formation is not addressed: once a team is
formed, it’s excluded from negotiations and cannot be split.
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Banneker and Sen [10] analyzed a scenario with uncertainty regarding pay-
offs. The process of coalition formation or payoff allocation is not covered.
Rather, the author focus on the problem of “coalition selection”, faced by
an user which has incomplete information about the advantage of joining a
particular coalition, and has to take a decision after a fixed number of iter-
ation involving interaction with it. The proposed solving mechanism make
use of a particular multinomial probability distribution, which summarizes
the information gained by the agents over possible payoffs for joining the
coalition, also providing an heuristic to solve ties.

Blankenburg [15] realized a coalition formation algorithm that consider
trust values which are progressively updated by single agents, exchanging
their private approximations regarding task costs and coalition valuations.
Some cryptographic techniques are used to encourage truthful reports of val-
uations. However, this interesting approach is rather resource-intensive: it
requires extensive inter-agent communication and relies on the computation
of optimal coalition structures and stable solutions (which are computation-
ally intensive tasks).

In the formalization proposed by Chalkiadakis [21], every user has a
type, which is the argument of the function defining the values of coalitions,
and a set of (non-probabilistic) beliefs regarding each other’s types. As in
real world, these beliefs don’t need to be consistent among agents, thus two
players can have different beliefs about another agent. The authors provide a
definition of the core for this setting, providing simple examples with beliefs
leading to a non-empty core solution, but they not cover the mechanism
that allows agents to update beliefs according to the performance of formed
groups.

Stochastic cooperative games

Suijs [66,67] gave a great contribution to the formalization of the aforemen-
tioned topics, introducing stochastic cooperative games (SCGs). The descrip-
tion of such games is formed by a set of agents, a set of coalitional actions
and a function assigning a (finite) random variable to each of them, which
represents the expected payoff to the coalition when the given action is
taken. It is important to note that, in this particular setting, the agents are
unsure about coalitional payoffs, and hence about their own one. This issue
is covered by Suijs by using relative payoff shares, i.e. allowing agents to
provide relative demands on the fractional share of the resulting payment.
These papers give the theoretical basis for games with payoff uncertainty,
but do not explicitly cover the coalition formation process. Moreover, the
provided model does not support the possibility of incomplete information
about partners, assuming common expectations regarding coalition values.
This particular hypothesis is dropped in the theory of Bayesian cooperative
games, described in the following section.
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Bayesian cooperative games

Many authors focus on Bayesian cooperative/coalitional games, including
Myerson [8, 47], Ieong and Shoham [35] and Chalkiadakis [18–20,23].

The latter has been developed directly starting from the cited work of
Suijs, introducing many important features, such as agent type uncertainty.
More formally, Chalkiadakis focused on a particular class of Bayesian coali-
tion formation problems (BCFPs), where every player has private proba-
bilistic beliefs about other members’ types (or capabilities). This uncertainty
then determines coalitional values’ uncertainty, which represents the poten-
tial gain users can obtain from a particular coalition formation process.

As an example, let’s imagine a group of professionals collaborating to
complete a common project, e.g. carpenters and electricians coming together
to build a house; every contractor has trade-specific skills about their types,
for example characterizing their capabilities from incompetent to highly
skilled. The overall payoff for the whole work obviously depends on the qual-
ity of the result, which is function of the ability of single workers and the
potential synergies and conflicts among them. Agents don’t know certainly
the types of potential co-workers, so the possible coalition structures and
values are determined by a probability distribution based on single agents’
beliefs, which influence the formation process and the stability of the re-
sults. Every team must also decide which project undertake – for instance
they may choose a simple house or an high-rise building – and such decision
is heavily influenced by the actual types of worker belonging to the given
coalition, but also by uncertainty about partner types as well as payoff di-
vision. Stability is treated given the agents’ beliefs, i.e. a player shouldn’t
have the incentive to change the current state of the coalition, because every
alternative configuration isn’t expected to give a better payoff with respect
to the one it currently hopes to receive. Thus, many alternative forms of sta-
bility can be defined, depending on the level of agreement required among
single players’ beliefs. The authors list three variants of Bayesian Core (BC)
in [18], a Weak Bayesian Core, a Strict Bayesian Core and a Strong Bayesian
Core, depending on the strictness one wants to enforce (looser definitions
are super-sets of the stricter ones).

Given this model, Chalkiadakis [18, 19] also presents a dynamic process
with random proposers, showing its convergence to the Strong BC, which can
be also seen as an extension of the work of Arnold and Schwalbe [4]. The
coalition formation process is covered through an heuristic algorithm [18,
20], using an iterative approach which updates beliefs during a bargaining
process, in attempt to simulate a perfect Bayesian Equilibrium (PBE) [45].

Ieong and Shoham [35] introduced the notion of worlds in which games
may be set. Every agent is assumed to partition the (private) information
gained about the given world in information sets, each of which represents
a world itself, indistinguishable from others from the agent’s point of view.
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Core-related topics are addressed defining an ex-ante, an ex-interim and an
ex-post core – i.e. a set of stable outcomes before the disclosure of the world,
after the world is drawn (referred to the awareness of each player regarding
information sets), and after the true world is revealed, respectively.

ex-interim core is strictly related to the one introduced by Chalkiadakis,
but the main concern is about the grand coalition; several other differences
exist between the two presented approach, such as the possibility to consider
an infinite level of mutual agent modeling – given partners’ payoffs – in Ieong
and Shoham’s core.

2.3 Coalition generation on graphs

An alternative and very interesting approach in the field of coalition for-
mation in characteristic function games is based on considering additional
constraints that limits the total number of feasible coalitions, which are
formalized with the help of a graph.

The idea of having coalitions whose potential membership is restricted
by some kind of graph is an old one, since it naturally reflects many real-life
situations. Work in network formation, in particular, following the seminal
work of Myerson [48], has attempted to solve the problem of progressively
building stable coalitional structures in networks, through the addition and
removal of links among nodes [36]. That line of research, however, focused
mostly on non-cooperative aspects of the coalition formation problem – for
instance, by modeling the problem as a bargaining game or some other type
of game in extensive form.

In cooperative environments, starting with the seminal work of Deng and
Papadimitriou in [28], there has been work on graph-inspired representa-
tions for coalitional games. Such representations include Ieong and Shoham’s
marginal contribution nets [34], Bachrach et al.’s hypergraph-based repre-
sentation to tackle coalition structure generation in skill games [9], and Braf-
man et al.’s work on identifying succinct coalitional game representations
to model multiagent planning problems [16]. Moreover, there has been some
work on cooperative solution concepts in graph-restricted games [17]. How-
ever, that work has not for the most part focused on the concept of the
core, neither has it attempted to address the question of how core-stable
coalitions emerge.

One exception is the notable work of Demange [27]. She proved that when
the graph restricting a game is a tree there always exists an element in the
core; and, moreover, presented a process that identifies a coalition structure
and a payoff allocation that lie in the core. This work is fundamental in the
context of this thesis, as the GDL algorithm presented in Chapter 4 can be
seen as a natural extension, providing a a decentralized algorithm defined
over a novel graphical representation of the coalition formation problem.
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In a clear distinction to Demange’s approach, the algorithm works on a
graphical model representation which, while being a junction tree of the orig-
inal graph, is nevertheless a tree whose nodes are not agents – but, rather,
variable and function nodes of a factored graph. Thus, a clear mapping be-
tween the solution of such graphical model and the characteristic function
game stable outcome is provided. Indeed, by extending GDL our approach
draws a clear connection between graphical models and stable coalition for-
mation. Importantly, GDL can be employed for optimal inference in general
graphs by making use of well known tree decomposition techniques (e.g., by
compiling the original problem into a junction tree).

Thus, the field of coalition generation over games on graphs, despite of
being poorly investigated, is a very promising one, leading to a convenient
reduction of the computational complexity required by algorithms. In par-
ticular, the work covered by this thesis provides a clear intuition on how
to address the problem of constructing core elements in graphs containing
cycles.
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Chapter 3

Stable Coalition Formation

The goal of this chapter is to formally introduce the theoretical concepts
of cooperative game theory, used as basis for the work discussed later on in
this thesis. We will first introduce the notion of characteristic function game,
presenting some interesting special types of such games and discussing the
standard solution concepts.

3.1 Characteristic function games

A game in the context of game theory is the abstract mathematical rep-
resentation of a scenario in which some players – called agents – interact.
These agents are usually referred as natural numbers, contained in a set
N = {1, 2, 3, . . . , n}. N also represents the grand coalition of the game, in a
sense that it contains every player in the game; thus, a coalition is simply a
subset of N . Note that, in common sense, this term refers to a group of peo-
ple with some kind of commitment to a common task, but this assumption
is not made in the following sections.

Definition 1 (Characteristic function game). A characteristic function game
G is given by a pair (N, v), where N = {1, 2, 3, . . . , n} is a finite, non-empty
set of agents, and v : 2N → R is a characteristic function, which maps every
coalition C ⊆ N to a real number v(C), which is usually referred as the value
of the partition C.

This definition does not give any actual indication to the nature of v, which
can be freely derived depending on the given scenario. In addition, note that
v assign a value to the whole coalition, thus no explicit indication is given
on how this value should be divided among single agents. The problem of
finding proper partitions of the coalitional value is a fundamental topic in
cooperative game theory, and assumes a central role in the field of coalition
formation activities by selfish rational agents, in which agents are selfish
entities whose interest is only maximizing personal interests.
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An implicit assumption also made in characteristic function games is the
possibility to share v(C) amongst the members in C in any way the members
of C choose. Formally, one refers to this property as transferable utility games
(TU games). For example, a game in which the value of coalition can be
represented by money belongs to this category.

Input representation

Due to the computational approach we focus on in this thesis, we must wisely
analyze how these games have to be represented as inputs to computer
programs. The obvious way suggested by Definition 1 is to explicitly list
every coalition C ⊆ N , specifying the associated value v(C). However, this
representation is of size Ω(2n), i.e. exponential in the total number of agents
in the game, thus not convenient for practical use unless we are dealing with
very small instances.
As shown by Megiddo [46], it is possible to model real-life interactions as
cooperative games maintaining an efficient bound with respect to the size of
the input representation, using some implicit forms of specification whose
encoding size is poly(n).

Positive payments

One usual assumption widely made in the game theory is to consider the
value of the empty coalition ∅ as 0.
Moreover, is it possible to assume the value of each coalition as non-negative
(i.e. agents form groups to make profit) or non-positive (i.e. agents form
groups to share costs). In the current chapter the former scenario will be
mostly used, even though all the property and definition can be easily
adapted to the latter one.
In fact, one of the characteristic function – or metric – presented in Section
5.4, specifically the User Price Factor, assigns a negative real number to
every coalition, due to its cost-related connotation.
The value assigned by the metric is a simulation of the cost the agents in
the given team would pay if they bought the needed energy in a “smart”
way in the forward market.

3.2 Outcomes

A key concept for cooperative game theory is the concept of outcome. An
outcome of a characteristic function game is formed by two parts:

• A partition of the n agents into coalitions, called coalition structure.

• A payoff vector, which distributes the value of each coalition among
its members.

28



Definition 2 (Coalition structure). Given a characteristic function game
G = (N, v), a coalition structure over N is a collection of non-empty subsets
CS = {C1, . . . , Ck} such that:

• ⋃k
j=1C

j = N

• Ci ∩ Cj = ∅ for any i, j ∈ {1, . . . , k} such that i 6= j

These two properties actually define a partition of the N set, in a sense that
every agent must appear in one and exactly one coalition.

Definition 3 (Payoff vector). A vector x = (x1, . . . , xn) ∈ Rn is a payoff
vector for coalition structure CS = {C1, . . . , Ck} over N = {1, . . . , n} if

• xi ≥ 0 for all i ∈ N

• ∑i∈Cj xi ≤ v(Cj) for any j ∈ {1, . . . , n}

The second property is ofter referred as a feasibility requirement, as it does
not enforce to distribute the entire amount of v(Cj) among the members of
coalition Cj .

Rather, one could require a stronger efficiency constraint, imposing that no
amount of payment is wasted and all is partitioned among the players, i.e.∑

i∈Cj xi = v(Cj) for any j ∈ {1, . . . , n}.

Definition 4 (Outcome). An outcome of G is a pair (CS, x) where CS
is a coalition structure over G and x is a payoff vector for CS. Using the
notation x(C) we denote the total payoff

∑
i∈Cj xi of a coalition C ⊆ N

under x.

Abusing this notation, we will write v(CS) =
∑

C∈CS v(C), defining the
concept of social welfare of the coalition structure CS.

3.3 Notable subclasses

Characteristic function games can be classified in a wide variety of sub-
classes, depending on the further properties that are required to hold. We’ll
now present two notable examples – monotone games and superadditive
games – that are particularly interesting for the following sections of this
thesis.

3.3.1 Monotone games

In many environments adding an agent to a given coalition can only increase
– more formally, not decrease – the overall value of that particular group.
This property is usually referred as monotonicity :
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Definition 5 (Monotonicity). A characteristic function game G = (N, v)
is said to be monotone if it satisfies v(C) ≥ v(D) for every pair of coalition
C,D ⊆ N such that C ⊆ D.

Many common types of games are monotonic, but it would be too restrictive
to consider monotonicity as an universal property: for example, coordination
and communication cost required after the addition of a new agent to a
coalition may, in fact, reduce the total value, even when there is an increased
productivity.

3.3.2 Superadditive games

A related and stronger property that is also fulfilled by many practical cases
is superadditivity : when it holds, it is always profitable for two teams to join
forces and form an unique coalition.

Definition 6 (Superadditivity). A characteristic function game G = (N, v)
is said to be superadditive if it satisfies v(C ∪D) ≥ v(C) + v(D) for every
pair of disjoint coalition C,D ⊆ N .

If the valued are assumed to be non-negative, superadditivity implies mono-
tonicity, since v(C) ≤ v(D) − v(D \ C) ≤ v(D), but the converse is not
always true. As an example, consider a characteristic function that grows
logarithmically with the coalition size, i.e. v(C) = log |C|.
In real-world cases, non-superadditivity may be the result of anti-trust or
anti-monopoly laws, which may prohibit large companies from working to-
gether at the expense of the market.

Given the aforementioned properties, if a game is superadditive there’s no
reason for the players to form multiple coalitions, since they can gain as
much as possible joining together and form the grand coalition. Thus, the
best outcome is of the form ({N}, x) where x satisfies

∑
i∈N xi = v(N).

It is important to note that every non-superadditive game can be turned into
superadditive computing, for every coalition, the maximum value that can be
gained by splitting into smaller groups. Formally, given a game G = (N, v),
a new game G∗ = (N, v∗) can be defined by setting:

v∗(C) = max
CS∈CSC

v(CS)

for every coalition C ⊆ N , where CSC denotes the space of all coalitions over
C. The game so defined is referred as the superadditive cover of G, which
can be easily shown as superadditive even if G is not. Intuitively, the value
of a group C in G∗ is the best amount the agents in C can obtain if they
are free to choose their partners. Superadditive cover can be used to ease
the study in terms of stability, as we will show in the following sections.
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3.4 Solution concepts

Every coalition structure and payoff vector that respect the given definitions
are valid outcomes of a particular game, but not all of them are equally
desirable and have the same probability to occur. For example, a solution
that assigns the entire value to just one agent, even if all the members of
the group contributed equally to the team work, is not very appealing for
the rest of the coalition, with respect to a solution that fairly distributes the
value.
In general, a given outcome can be evaluated according to two sets of criteria:
fairness and stability. The former refers to the ability of the given solution to
represent every agent’s contribution in terms of individual payments, while
the latter focus on the incentives for the players to stay on the current
coalition structure, rather than deviating from it.

3.4.1 The core

We will now introduce an important concept referred as the core, which
plays a key role in the work covered by this thesis and in the field of coalition
formation activities by selfish rational agents in general.
Consider a characteristic function game G = (N, v) and an outcome (CS, x),
recalling that x(C) refers to the total payoff of C under x. If x(C) < v(C)
for some C ⊆ N , the agents in C would be incentivized to leave the current
coalition structure and form a group on their own, distributing the the extra
payoff earned from the deviation by sharing it equally among new players,
i.e. setting:

x′i = xi +
v(C)− x(C)

|C|
The considered outcome (CS, x) is said to be unstable, since some agents
are incentivized to change it. The set of stable outcomes, where no subset of
players has interest in deviating the current configuration, is called the core
of G [31].

Definition 7 (Core). The core C(G) of a characteristic function game G =
(N, v) is the set of all outcomes (CS, x) such that x(C) ≥ v(C) for every
C ⊆ N .

It is easy to prove that stability implies efficiency, in a sense that any out-
come in the core – therefore stable – maximizes the social welfare, i.e. the
total payoff of all players. Thus, solutions in the core are more likely to occur
when the game is played.

Theorem 1. If an outcome (CS, x) is in the core of a characteristic function
game G = (N, v), then v(CS) ≥ v(CS′) for every coalition structure CS′ ∈
CSN
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The core of superadditive games

We have seen that for superadditive games the notion of outcome is only
related to the payoff vector, since the best coalition structure is always the
grand coalition. Is it possible that this constraint makes some outcomes in
the core to be dropped, i.e. can the core of a superadditive game contain
some outcomes where the grand coalition is not formed?
Theorem 1 imposes that if a game is strictly superadditive – i.e. v(N) >
v(CS) for any coalition structure CS that consists of two or more coalition
– the aforementioned situation can not happen.
On the other hand, if v(N) = v(CS) for some CS ∈ CSN , some outcomes in
the form (CS, x) may actually be in the core. Anyway, for any such outcome
it holds that ({N}, x) is in the core as well, since:∑

i∈N
xi =

∑
C∈CS

∑
i∈C

xi =
∑
C∈CS

v(C) = v(N)

so x is actually a payoff vector for N , proving the previous statement. Thus,
without loss of generality, all outcomes where the grand coalition does not
form can be safely ignored, because an equivalent (i.e. with the same payoff
vector) grand coalition outcome must be in the core.
For superadditive games the notation can be simplified, defining the core as
the set of vectors x such that:

• xi ≥ 0 for all i ∈ N

• x(N) = v(N)

• x(C) ≥ v(C) for all C ⊆ N

We remark that this definition holds only for superadditive games. If it is
not the case, enforcing the grand coalition form may cause a loss of stability.
Nevertheless, there’s an important result [32] linking the concept of core of a
game to its superadditive cover, which permits to view the stable outcomes
as payoff vectors of the grand coalition without loss of generality.

Theorem 2. A characteristic function game G = (N, v) has a non-empty
core if and only if its superadditive cover G∗ = (N, v∗) has a non-empty
core.

Many works in literature simply assumes superadditivity, justifying this hy-
pothesis by saying that replacing the game with its superadditive cover is
always possible. However this approach has been proved to be problematic
by Aumann and Dreze [6] if cross-coalition transfers are not allowed. This
modus operandi is also problematic since computing the characteristic func-
tion of the game G∗ can be particularly difficult from a computational point
of view.
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Chapter 4

Coalition Formation with
GDL

This chapter presents the work of Vinyals et al. [71] that stands as theo-
retical base for the real-world application presented in Chapter 5 (the main
contribution of this thesis), where these algorithms will be applied to the
domain of the energy market. Specifically, the goal is to allow a group of
consumers to access and buy energy from the market acting as a single
virtual consumer, but the formation of particular coalitions. Furthermore,
the set of energy coalitions formed are required to be: (i) optimal, i.e., the
found outcome maximizes the collective value; and (ii) stable [52], i.e. no
selfish agent can be incentivized to deviate from the given solution. As an
additional restriction, the result has to fulfill some membership constraints
represented by a graph, which models the existing knowledge relations.

In particular, we will now describe a novel graphical model representa-
tion scheme for coalitional games defined over graphs, and exploit this rep-
resentation to devise decentralized algorithms leading to the formation of
core-stable coalition structures. For games defined over trees, we propose an
algorithm that allows agents to identify a stable outcome. That is, an opti-
mal coalition structure along with a payoff allocation such that the resulting
pair is in the core of the game. Similarly, for arbitrary graphs, an algorithm
that either outputs a core element – or, alternatively, detects core empti-
ness – has been developed. Both algorithms build upon well-known message
passing algorithms from the GDL family [58, 72] which has been extended
to this setting. The aforementioned scenarios have a natural modelization in
coalitional games, formally defined in Chapter 3. More importantly, a new
representation for coalitional games over graphs will be introduced, allowing
the execution of decentralized algorithms which return coalition structures
that meet the properties mentioned above. Actually, the presented schema
is the first in literature to deal with the goals of optimality and stability at
the same time, which are usually treated separately.
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4.1 Related concepts

We will now present some background notions required by the following
sections, dealing with classical concepts of game theory and coalition for-
mation literature. Some definition are slightly modified with respect to the
ones given in the previous chapter, in order to adapt them to the context of
coalition formation over graphs.

4.1.1 Coalitional games on graphs

In addition to standard definition of characteristic function games, we will
now assume that feasible coalitions are determined by a graph G, with two
fundamental properties:

• Each node of the graph represents an agent

• A coalition S is allowed to form if and only if every two agents in S
are connected by some path in the subgraph induced by S.

We denote the set of agent nodes in G by A(G). Given a set of agents
A ⊆ A(G) we also denote GA as the subgraph of G induced by A and G\A
as the subgraph of G induced by all the agents A(G) excluding those in A.

Definition 8 (Coalitional game on a graph). A coalitional game CG on a
graph G is a tuple 〈A, v, F (G)〉 where:

• A = {1, 2, 3, . . . , n} is a finite, non-empty set of agents.

• F (G) is the set of all feasible coalitions – i.e. coalitions permitted to
form given G.

• v is the characteristic function, defined for all coalitions in F (G).

Definition 9 (Coalition structure on a graph). Given a game on a graph
〈A, v, F (G)〉, a coalition structure CS = {S1, . . . , Sk} is a set of feasible
(∀S ∈ CS : S ∈ F (G)), exhaustive (S1∪ . . .∪Sk ⊇ A) and disjoint (∀S, S′ ∈
CS : S ∩ S′ ∩A = ∅) coalitions with respect to agents in A.

While the restriction of CS to be exhaustive and disjoint with respect to
A differs from the traditional in the literature, it is required later on the
formalization of algorithms and proofs, to consider games in which the graph
G contains agents nodes not in A (A ⊂ G). Observe that, if this is the case,
this definition allows these ghosts agents to be in more than one coalition or
in no coalition at all; while if A = G, the traditional setting persists. Also,
all solution-related concepts – including the notions of payoff allocation,
stability and core – are assumed to be defined in the classical way.
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4.1.2 GDL message-passing algorithm

GDL is a general algorithm based on the message-passing paradigm, which
permits to compute an objective function by the exploitation of the fac-
torization of a global function into the combination of local ones. GDL is a
widely used algorithm – in fields that go from computer vision to information
theory – thanks to its ability of unifying a family of well-known techniques
(e.g. Viterbi’s, Pearl’s belief propagation or Shafer-Shenoy algorithms to
name a few).
Consider a function F , that depends on N variables, X = {x1, . . . , xn},
and is defined as the combination of M factors F = {f1, . . . , fm} such that
F (X) =

⊗
f∈F fm(Xm) where Xm ⊆ X are the variables in the domain of

fm and
⊗

stand for the combination (called joint) operator. This global
function can be encoded using a particular type of graphical model, called
factor graph, a bipartite graph composed of two kinds of elements: variable
nodes (X ) and function nodes (F). Then the objective function is to find
the assignment of variables in X that maximize the global function X∗ =
arg maxf∈F fm(Xm).
To obtain optimality and convergence, GDL arranges the objective function
in a junction tree. A junction tree for 〈X ,F〉 is a tree of cliques that can be
represented as a triple 〈C,Ψ,S〉 where:

• C = {XC1 , . . . , XCn} is a set of cliques, where each clique XCi is a
subset of variables XCi ⊆ X .

• Ψ = {ψ1, . . . , ψm} is a set of potentials, one per clique, where a po-
tential ψi is defined as the combination of a set of functions Fi ⊆ F ,
ψi(Xψi

) =
⊗

f∈Fi
f(Xf ).

• S is a set of separators, where a separator Sepij ∈ S is an edge between
clique XCi and XCj containing their intersection, i.e. Sepij = XCi ∩
XCj .

In addition, two more properties needs to be satisfied: covering, i.e. each
potential domain is a subset of the clique to which it is assigned (Xψi

⊆ XCi)
and each function f ∈ F is included in exactly one potential, and running
intersection, imposing that if a variable xi is in two cliques XCi and XCj ,
then it must also be in all cliques on the path between them.
The main goal of GDL is to exploit the distribution of cliques to compute the
objective function factored among them. Thus, GDL establishes a message-
passing protocol for cliques, to share information about the variables in their
scope.
In the single-vertex message-passing version – focused on computing the
objective function at only one clique XCi – the execution is run over a
rooted junction tree, in which each edge is directed toward the target clique
XCi .
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Running the single-vertex GDL algorithm over a rooted junction tree 〈C,Ψ,S〉,
requires that each cliqueXCi exchanges a message µi→p with its clique parent
XCp , when, for the first time, it has received messages from all its children:

µi→p(Sepip) = max
XCi
\Sepip

ψi(Xψi
)⊗

⊗
j∈XChi

µj→i(Sepji) (4.1)

where XChi stands for index of cliques’s children of XCi in the rooted junc-
tion tree.

Once every children has sent its message, each clique XCi can proceed with
the computation of its state function si(XCi) (also known as belief or knowl-
edge function) as:

si(XCi) = ψi(Xψi
)⊗

⊗
j∈XChi

µj→i(Sepji) (4.2)

When the algorithm has completed the execution, each state function si(XCi)
(with XCi ∈ C) represents its knowledge with respect to the variables X∗Cj

,

reminding that si(XCi) = maxX\XCi

⊗
j∈Di∪{i} ψj(XCj ), where Di stands

for the index of the descendants of XCi in the rooted junction tree 〈C,Ψ,S〉.
Finally, the assignment formed by optimal values for the local variables can
be inferred by running the value propagation phase, recursively applying:

X∗Cj
= arg max

Cj ,Sepjp=Sep∗jp

sj(XCj ) (4.3)

where p stands for the parent of XCi in the directed junction tree and Sep∗jp
stands for the values of Sepjp variables already inferred on cliques up XCi

in the rooted junction tree.

As a last step,
⋃
XCj
∈C X

∗
Ci

computes the optimal solution X∗.

4.2 Problem representation

We will now define a novel representation of a coalitional game on a graph
G based on a factor graph, which gives a smart model of the interactions
among agents in G, by arranging them in a pseudotree PT .

Definition 10 (Pseudotree). A pseudotree PT of a graph G over a set of
agents A is a rooted tree with agents A as nodes and the property that for
any pair of agents i, j ∈ A if exists any path between them in G composed
of agents not in A then i, j are on the same branch1 in PT . In the case
A(G) = A, this property reduces to: any two agents that share an edge in G
are on the same branch in PT .

1A branch stands for the path between a leaf node and the root node in PT
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a0

a1

a2

F(G) v

{0,1,2} 2
{0,1} 0.1
{0} 0.1
{1,2} 1.5
{1} 0.6
{2} 0.1

CS∗ = {{0, 1, 2}}
ρ = {0.5, 1.4, 0.1}

(a) Game over a tree

x0 x01 x012

X0, F0

x1 x12

X1, F1

X2, F2

x2

(b) Representation

XC0

XΨ0
={x0,x01,x012}
XC0

=Xψ0

x01, x012

XC1

Xψ1
={x1,x12}

∪{x01,x012}
XC1

=Xψ1
x12

XC2

Xψ2
={x2}∪{x12}
XC2

=Xψ2

(c) γ-Junction tree

Figure 4.1: Example of a) a game on an acyclic graph; b) a representation
of (a); and c) a junction tree of (b).

Figure 4.1(a) shows an example of a game on an acyclic graph (which al-
ready represents a pseudotree rooted in agent a0), its representation (Figure
4.1(b)) and the final junction tree (Figure 4.1(c)). Note that any pseudotree
of G will form a line between agents in A(G) because there’s an edge in G
between any pair of agents in A(G) and hence, should be placed in the same
branch. We refer to the set of agents’ nodes in PT with A(PT ).
Then, given any agent ai ∈ A(PT ), we denote Chi as its children, Pi as its
parent, Ani as its ancestors, Di as its descendants and PTi as the subtree
rooted at ai in PT . Thus, in Figure 4.1(a), Ch1 = D1 = {2}, P1 = 0, An1 =
{0} and PT1 is a tree rooted at a1 composed of agents a1, a2 sharing an edge
between them. The defined pseudotree imposes an ordering among variables,
which is propagated to the corresponding agents in A. Thus, given a game
on a graph CG = 〈A, v, F (G)〉 and a pseudotree of G over A, it’s possible to
partition the set of feasible coalitions into |A| disjoint sets {Si|ai ∈ A} – one
per agent – where the set of coalition Si contains all the feasible coalitions
that include agent ai but no agent up ai in PT , Si = F{i}(G\Ani

).

Definition 11 (Required coalition). Given CG = 〈A, v, F (G)〉 a game on
a graph and a pseudotree PT of G over A, we define the set of required
coalitions for a coalition S ∈ Si, Req(S), as Req(S) =

⋃
j∈Chi Req(S, j),

while Req(S, j) is recursively defined as:

Req(S, j) =

{
∅ if S ∩A(PTj) = ∅
S′ ∪⋃k∈Chj Req(S \ S′, k) otherwise

(4.4)

where S′ = arg max{S′′∈Sj|S′′⊆(S∩A(PTj))} |S′′ ∩S|, that is the coalition in Si,
strictly composed of variables in S ∩ A(PTj), with maximum intersection
with S.
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Intuitively, the concept of required coalition is that an agent ai willing to
form one of its local coalition S ∈ Si ensures the – exclusive – participation
of agents in S down ai in the tree (S ∩Di), not directly through them but
by means of the set of required coalitions Req(S).
As an example, if agent a0 wants to form the coalition {0, 1, 2}, it won’t
be necessary for him to negotiate directly with a2, he can delegate this
action to a1, which will be responsible to form the coalition {1, 2} (local to
a1). Ideally, one agent ai has to negotiate the formation process only with
its children Chi, allowing a more succinct representation of the problem,
saving computational resources.

Next, the aforementioned concept will be summarized to give a novel
representation of a coalitional game in terms of factor graph, which exploits
this idea to efficiently capture the dependencies that emerge among agents,
giving feasibility constraints to the formation of coalitions by means of a
graph.

Definition 12 (Representation). Given CG = 〈A, v, F (G)〉 a game on a
graph and a pseudotree PT of G over A, we define a factor graph represen-
tation of CG as R(CG,PT ) = 〈X ,F〉 where:

• X = {X1 ∪ . . . ∪ X|A|} is a set of binary variables, one per feasible
coalition, that are partitioned in |A| disjoint sets, one per agent. Analo-
gously to the concept of local coalitions, given an agent ai ∈ A, its set of
local variables Xi contains all the coalitions variables that include agent
ai but no agent up ai in PT . Formally, Xi = {xS |S ∈ F{i}(G\Ani

)}

• F = {F1 ∪ . . . ∪ F|A|} is a set of functions that are partitioned in |A|
disjoint sets, one per agent. Given an agent ai, its set of local functions
Fi is composed of:

– {fv(xS)|xS ∈ Xi}, a set of value functions, one per variable in
Xi, where a function fv(xS) returns the value of coalition S when
xS = 1, i.e. fv(xS = 1) = v(S).

– fu(Xi), a unique function that controls that one and only one of
the variables Xi set to 1:

fu(Xi) =

{
0 if

∑
xS∈Xi

xS = 1

−∞ otherwise
(4.5)

– A set of functions that capture the dependencies between each

variable xS ∈ Xi and its set of requiring variables X
\r
S where X

\r
S

stands for all the variables corresponding to coalitions that require

S(X
\r
S = {xS′ |S ∈ Req(S′)}).

Formally, for each xS ∈ Xi, the following two sets of variables
are included:
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· {fr(xS , xS′)|xS′ ∈ X\rS }, a set of require functions, one per
requiring variable of xS. Given a requiring variable xS′ ∈
X
\r
S , the require function fr(xS , xS′) enforces that xS′ is ac-

tivated only if its requested variable xS is also activated, sub-
tracting the value of xS in this case.

fr(xS , xS′) =


−∞ if xS′ = 1 ∧ xS = 0

−v(S) if xS′ = 1 ∧ xS = 1

0 otherwise

(4.6)

· {fb(xS′ , xS′′)|xS′ , xS′′ ∈ X
\Req
S } a set of blocking functions,

one per each pair of variables that requested the same variable
xS. Intuitively, the set of blocking functions control that a
most one of the coalitions variables that require xS activates.

fb(xS , xS′) =

{
−∞ if xS = 1 ∧ xS′ = 1

0 otherwise
(4.7)

Given the above definition of representation R(CG,PT ) = 〈X ,F〉 of a CG,
its optimal solution is defined as X∗ = arg maxX

∑
f∈F f(X) = F(X). To

obtain the optimal outcome from X∗, i.e. optimal coalition structure CS∗,
we will next define a mapping Ω that maps any assignment of variables X
in R(CG,PT ) to a coalition structure in CG.

Definition 13 (Mapping Ω). Given R(CG,PT ) = 〈X ,F〉 a representation
of a game on a graph, Ω is a function that maps any assignment for any set
of variables X ⊆ X into a coalition structure CS composed of all coalitions
S activated in X – xS = 1 ∈ X – for which it does not exist any other
coalition that contains all agents in S activated in X, i.e. @xS′ = 1 ∈ X
such that S ⊂ S′.
The correctness of Ω, i.e. the representation of R(CG,PT ) where CG =
〈A(G), v, F (G)〉, is granted by Theorem 3 (which will not be proved here),
which states that the optimal solution of R(CG,PT ) identify the optimal
coalition structure in CG, Ω(X∗) = CS∗.

Theorem 3. Given a game on a graph CG = 〈A, v, F (G)〉 and a pseudotree
PT of G over A(G), the representation R(CG,PT ) = 〈X ,F〉 is correct.
Thus, the following property holds:

∀X|F(X) 6=∞
(
Ω(X) ∈ CS ∧ F(X) = v(Ω(X)

)
Using this representation CG = 〈A, v, F (G)〉, we can now process it through
the GDL message-passing algorithm presented in Section 4.1.2, allowing
agents to obtain the optimal outcome for CG. Since GDL requires an input
in a junction-tree form, we’ll now define a particular one R(CG,PT ).
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Definition 14 (Junction tree γ). Let γ be a function that given a game on
a graph CG = 〈A, v, F (G)〉 and a pseudotree PT of G over A maps them to
a junction tree γ(CG,PT ) = 〈C,Ψ,S〉, where:

• Ψ = {φi|ai ∈ A contains one potential per agent in A where ψi(Xψi
) is

defined as the combination of functions Fi (Fi defined as in Definition
12).

Xψi
=
⋃
f∈Fi

Xf = {Xi ∪
⋃

xS∈Xi

X
\r
S }

• C = {XCi |ai ∈ A} contains one clique per agent in A, where XCi =
Xψi
∪⋃j∈Chi XCi \Xj.

• S is a set of separators that contains one separator Sepij per pair
of cliques XCi and XCj such that aj is parent of ai in PT . As in
definition, a separator Sepij includes the intersection of cliques XCi,
XCj and hence, in this case Sepij = XCi \Xi.

In these definitions we assume that γ(CG,PT ) distributed the cliques in a
way such that each agent ai ∈ A is assigned to a single clique XCi . Thus,
the GDL message-passing scheme among cliques is indeed a message-passing
scheme among agents in PT . Therefore, the properties given so far allow us
to obtain the optimal solution X∗ of R(CG,PT ) and hence, by mapping Ω,
the optimal coalition structure in CG = 〈A, v, F (G)〉.
More formally, once the execution of GDL is over, the state function of each
agent ai ∈ PT recovers the value of the optimal coalition structure CS∗,i of
a subgame CGi:

max
XCi

si(XCi) = max
XCi

max
X\XCi

⊗
j∈A(PTi)

ψi(XCi) = v
(
CS∗,i

)
(4.8)

where CS∗,i stands for the best coalition structure that agent ai and agents
down in PT can form, using a subset of coalitions of CG that do not contain
any agent up ai in PT .

4.3 Algorithms

4.3.1 Stable coalition formation in trees

The SCF-Trees, outlined in Algorithm 3, has three phases: preprocessing,
demand propagation and offer propagation.

First, agents start with a preprocessing phase (line 2) that compiles the
problem into a junction tree of the compact representation (see section 4.2)
to be used in the following two phases. In the preprocessing phase, agents
arrange the graph into a pseudotree PT .

40



In Figure 4.1, the tree of the game in Figure 4.1(a) is rooted at a0. Then
each agent ai creates one binary variable xS , along with a function with
its value vS , for each possible coalition that ai can join with agents down
the tree. For example, in Figure 4.1 a0 creates three variables, namely x0,
x01, x012. Notice that the set composed of all these variables is Xi (e.g.
X0 = {x0, x01, x012}). Then, each agent ai waits for its parent’s message
that contains a set of tuples where each tuple is composed of a coalition up
the tree xS that require a set of agents S′ in A(PTi). In an acyclic graph,
these variables are singly composed of all parent’s variables that contain
ai (Xpi). Then, for each variable xS ∈ Xpi, each agent ai creates a require
function between xS and xGS′∩GA(PTi)

.
Thus, in Figure 4.1, a1 after receiving {〈x01, 1〉, 〈x012, {1, 2}〉} from a0

creates two require functions, namely r(x01, x1) and r(x012, x12). Then, each
agent ai communicates to each of its children aj ∈ Chi a message that
contains for each set of variables that include aj , xS ∈ Xij , a tuple with xS
and the set of agents from S reachable from aj , S ∩ A(PTj). The intuition
is that each agent aj would act as a mediator negotiating the payment
demanded by agents down PTi to join a coalition xS with ai.

Finally, each agent computes its local function fi as the combination of:
(i) function ui that controls that one and only one of Xi coalition variables
is activated (set to 1); (ii) value functions ~v; and (iii) require functions ~r
(note that in acyclic graphs the set of blocking functions is empty). Sepji =
{xS ∈ Xi|S 3 j}. When an agent ai receives the set of coalitions Seppi from
its parent, ai creates a require relation for each xS ∈ Seppi and the coalition
xGS∩GTi

∈ Xi (that is the coalition composed of ai and all agents down ai
in T also included in S). Hence, when preprocessing is over, each agent ai
has computed:

• Xi, the set of its local variables.

• ⋃xS∈Xi
X
\r
S , the set of all the variables of ap that includes ai.

• fi, its local function.

After this first processing phase is over, SCF-Trees runs two phases:

• A demand propagation phase (DemandPropagation), in which agents
exchange demand messages up the tree.

• An offer propagation phase (ValuePropagation), in which agents ex-
change offer messages down the tree.

When executing the demand propagation protocol, each agent ai waits until
receiving a demand message from each of its children aj ∈ Chi (lines 1-3 of
Algorithm 1).
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Algorithm 1 DemandPropagation

Each ai knows 〈ap, Xi, Chi, ψi〉 and runs:

1: for all aj ∈ Chi do
2: Wait for the demand message dj→i(Sepji) from aj ;
3: end for
4: pi(XCi

) = ψi(Xψi
)⊗⊗j∈Chi

dj→i(Sepji);
5: ρi = maxXCi

pi(XCi
);

6: if ai is not the root then
7: di→p(Sepip) = max

Xi

pi(XCi)− ρi;
8: Send di→p(Sepip) to ap;
9: end if

The demand message that aj sends to its parent ai contains for each of the
coalition variables xS in Sepji the amount required for aj and agents down aj
in PT to join coalition S. For example, in Figure 4.1(b), agent a0 waits until
receiving the demand message from a1 that contains a function over variables
in their separator {x01, x012}. Upon receiving all demand messages, each
agent ai computes its payment function pi as the combination of function
ψi, that combines its local utility and restrictions for variables Xψi

, and the
demand messages from the children, that subtract the amount required for
agents down ai (line 4). Then, ai computes its payment ρi as the highest
payment ai can get on any of its variable configurations (which stand for local
ai’s coalitions). After that, if agent ai has a parent in PT (lines 6-8), ai sends
a message to its parent ap that summarizes its payment function pi over all
possible configurations of variables in Sepip, subtracting its own payment ρi.
The result of this summarization is for each coalition variable xS in Sepip the
payment required from agents in A(PTi) to join S. Thus, in Figure 4.1(b),
a1 summarizes its payment function p1 over variables {x01, x012} (filtering
out X1 = {x1, x12}). Then, agents proceed to execute the value propagation
phase by executing the value propagation protocol (whose pseudocode is
depicted in Algorithm 2).

During the value propagation protocol, each agent ai waits until receiving
a value message from its parent ap (lines 1-3). Such message specifies whether
ap is willing to pay the amount requested by agents in A(PTi) so that they
will join a coalition xS ∈ Sepip. For example, in Figure 4.1(b), a1 waits
until receiving a message from a0 with its decision with respect to coalitions
x01, x012. Then, ai computes the best coalition it can join given the decision
of its parent ap (line 4). If ap decided to create a coalition xS ∈ Sepip and
thus is willing to pay agent the amount requested by ai and other agents (S′)
down the tree to join S, then the best coalition for ai is xS′ . In contrast, if
ap does not activate any variable xS ∈ Sepip, ai will select the best coalition
ai can join that includes itself and some agents down ai in the tree. Finally,
agent ai sends an value message to each of its children aj ∈ Chi that contains
which coalition xS ∈ Sepij ai accepted to create, if any (line 5-7).
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Algorithm 2 ValuePropagation

Each ai knows 〈ap, pi(XCi), Chi, {Sepji}〉 and runs:

1: if ai is not the root then
2: Wait for Sep∗ip from ap;
3: end if
4: X∗Ci

= arg maxXCi
,Sepip=Sep∗ip

pi(XCi
);

5: for all aj ∈ Chi do
6: Send Sep∗ji ← X∗Ci

∩ Sepji to aj ;
7: end for

Algorithm 3 SCF-Trees

Each ai knows 〈v, F{i}(G)〉 and runs:

1: Preprocessing phase
2: Pseudotree arrangement: run token based mechanism that arrange

agents into a pseudotree PT – At completion, ai knows ap, Chi, PTi;
3: Junction tree arrangement: run message-passing algorithm that ar-

range agents into a junction tree γ – At completion, ai knows Xi, ψi;
4: Demand propagation phase
5: 〈pi(XCi), ρi, {Sepji}〉 ← DemandPropagation(ap, Xi, Chi, ψi);
6: Value propagation phase
7: X∗Ci

← ValuePropagation(ap, pi(XCi), Chi, {Sepji});

4.3.2 Stable coalition formation in graphs

The aforementioned algorithm can be extended to the case of general graphs,
by the execution a n-iteration of the tree-based case. The process starts from
the transformation of the input to obtain a pseudotree through a DFS search.

Pseudotree construction through DFS

SCF-Graphs operates on a variable ordering which is given by a DFS (Depth-
First Strategy) arrangement of the problem graph. Formally, DFS is a search
strategy that progresses by expanding the first child node of the search tree
that appears and thus going deeper and deeper until a goal node is found,
or until it hits a node that has no children. Then the search backtracks,
returning to the most recent node it hasn’t finished exploring. In particular,
a DFS traversal of the graph is done using Algorithm 4, which distributedly
computes, for each agent ai, its parent pi, its children chi, its pseudoparents
ppi and its pseudochildren pchi, assuming the list of adjacent nodes nghi
is provided. In addition, heuristics can be used to generate a specific kind
of pseudotree, since multiple – corrected – ones can result from the same
input graph, depending on the ordering used to iterate over adjacent nodes.
In this context, we are interest in the generation of DFS arrangement with
the lowest induced width [12].
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Algorithm 4 DFS traversal on a graph

nvi ← nghi
if ai 6= root then
〈token, sender〉 ← Wait Token()

pi ← sender
ppi ← (token ∩ nghi) \ pi
nvi ← nvi \ (ppi ∪ pi)
for all aj ∈ ppi do

pchj ← pchj ∪ ai
nvj ← nvj \ ai

end for
end if
token← token ∪ ai
while nvi 6= ∅ do

aj ← pop(nvi)
chi ← chi ∪ aj
Send Token(token,aj)
〈token, sender〉 ← Wait Token()

end while
token← token \ ai
if ai 6= root then

Send Token(token,pi)
end if

Definition 15 (Induced width). An ordered graph is a pair (G, d), where
G is a undirected graph and d = (X1, . . . , Xn) is an ordering of the nodes.
The width of a node in an ordered graph is the number of neighbors that
precede it in the ordering. Thus, the induced width is the width of the induced
ordered graph obtained as follows: for each node, from last to first, in d, its
preceding neighbors are connected to a clique. The induced width of a graph,
is the minimal induced width over all ordering. The induced width is also
equal to the treewidth of a graph.

In a centralized setting, the most common heuristics for this problem are
the following: the maximum degree [69] and the min-fill heuristic [39]. The
latter does not produce general pseudotree orderings (much less DFS ones),
and is difficult to implement in a distributed setting because it would require
coordination at each step between all the remaining agents.

In what follows we only cover the maximum degree heuristic, because it is the
most suitable for the requirements of real application described in Chapter
5. This heuristic simply consists in considering the set of adjacent, not yet
visited nodes nvi as an ordered list instead of a set, which goes from the
most connected node to the least one.
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Execution of SCF-Graphs

In this section we introduce the SCF-Graphs algorithm (whose pseudocode is
outlined in Algorithm 5) that allow agents to self-organize into stable coali-
tion structures or detect the core emptiness on any graph-restricted coali-
tional game. SCF-Graphs requires a preprocessing phase, in which agents
compile the game CG = 〈A(G), v, F (G)〉 into a pseudotree PT and generate
leading coalitions and requiring mappings as described in Section 4.2. As a
result of this preprocessing each agent ai in SCF-Graphs starts knowing its
parent (ap) and children (Chi) in the PT as well as its leading coalitions Li,
the requiring mapping Reqi and the characteristic function v. Building on
this, each agent ai initializes its local decision problem (line 1) by creating
its set of local decision variables Xi, including leading and requiring sets,
and its value function Vi.

a0

a1

a2

a3

(a) G

a0

a1

a2

a3

(b) PT

x0 x01 x02 x012 x03 x013 x023 x0123

x1 x12 | x01 x012

x2 | x12 x02

x3 | x03

�x12, x02�

�x01, x012, x02� �x03�

(c) Clique tree.

Figure 4.2: Example of (a) a graph with a cycle (G); (b) a pseudotree PT
of G; and (c) a clique tree of PT .

Then, SCF-Graphs runs into three phases:

• Demand propagation phase

• Main phase

• Offer propagation phase

during which agents exchange two kinds of messages: (i) demand messages,
to exchange demands through tree-edges for requiring coalitions whose ac-
tivation is required by some agent up to PT ; and (ii) offer messages, to
propagate offers through tree- and pseudo- edges for required coalitions to
agents down PT .
In what follows we describe the main phases of the SCF-Graphs algorithm
using the trace in Figure 4.3 of an execution of SCF-Graphs over the the
pseudotree arrangement of the CG cyclic graph game in Figure 4.2(a).
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Figure 4.3: Messages exchanged at different steps of the execution of SCF-
Graphs over the clique tree in Figure 4.2.

Each agent ai starts the demand propagation phase waiting until receiving
a demand message from each of its children aj ∈ Chi (line 3). Figure 4.3(a)
depicts the demand messages exchanged during this phase. Thus, agent a1
waits until it receives the demand message from a2 that contains a function
over feasible configurations of variables X21 = {x12, x02} before computing
the demand message for its parent a0. To compute its demand for its par-
ent, each agent needs first to compute its payment function and its expected
payment (Procedure demand propagation). Each agent ai computes its pay-
ment function, Pi(X

P
i ), as the combination of its value function, Vi(Xi), and

the (last) demand messages from its children that subtract the amount re-
quired for agents down ai.

Thus, in Figure 4.3(a), agent a1 will combine its value function V1(X1)
with the demand received from a2. Notice that the payment function de-
pends on a set of variables XP

i , that is the set of variables of ai (Xi) and the
set of variables in the scope of any demand received from a child aj ∈ Chi
(Xji). Thus, in Figure 4.3(a), the payment function of a1 will depend not
only on its variables X1 but also on some alien coalition variable, namely
x02, that is propagated from a2. Then, ai computes its expected payment
ρi as the highest payment he can get on any of its leading coalitions, that
is for any configuration of a variable in XL

i . Thus, in Figure 4.3(a), a1 com-
putes the highest payment he gets among variables x1,x12. After that, if
agent ai is not the root, ai sends a message to its parent ap that summa-
rizes its payment function Pi over all possible configurations of variables in
Xji (filtering out its leading variables XL

i ) and subtracts its expected pay-
ment ρi. Thus, in Figure 4.3(a), a1 summarizes its payment function P1 over
variables {x01, x012, x02} (filtering out its leading variables XL

1 = {x1, x12}).
The result of this summarization is, for each coalition variable xS in Xip,
the demand that agent aj will need to satisfy to agents in A(PTi) to ensure
their participation in S.
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In case of an alien variable xS 6∈ Xi, this payment is not simply the amount
demand by agents down PTi but considers the potential loss of ai when
restricting to coalitions that does not contain any agent in S (the maximum
offer ai is going to offer to agents in S to join). Thus, in Figure 4.3(a), the
demand of agent a1 to its parent a0 for x02 is the maximum between the
amount demanded from a2 to join this coalition and the potential loss of a1
from moving to a coalition ({1}) that does not include a2.

Once the demand propagation phase is over, agents start the main phase
(lines 5-10) in which each agent ai iteratively checks (line 5): (C1) if he
has received an offer for all requiring coalitions (XL

i 6= Xi); and (C2) if
its payment depends on some alien coalition, (XP

i 6= Xi). If any of these
two conditions is not satisfied, it means that agents needs to either receive
new demands from children (that get rid of alien variables) or offers from
their ancestors (that make an offer for some requiring coalition), so agent
ai waits for messages. Thus, in Figure 4.3(a)-(d), after the initial demand
propagation phase, agent a3 waits until receiving an offer message from its
parent a0, whereas agent a1 needs to wait for a message from its parent
a0 and a new demand from its child a2 that gets rid of the alien coalition
x02. When agent ai receives an offer message over a coalition S, he adds
requiring variable xS to its set of leading variables XL

i (given the offer, now
ai is the leader of coalition S) and updates its value function and optimal
decision over S. Additionally, ai checks if the offer messages comes from
its parent in the pseudotree, in which case the agent marks itself as the
new root. Finally, independently if a new offer or demand is received the
agent re-runs the demand propagation procedure recomputing its payment
function, its payment and the demand for its parent. When C1∧C2 is satisfied
(notice that for the root they are always satisfied), each agent ai starts the
offer propagation phase (lines 9-39). For example, in Figure 4.3, a0, as root,
starts the offer propagation phase just after the initial demand propagation
phase. First, each agent ai computes its optimal local configuration x∗i given
the already inferred decision of its ancestors Ani over requiring coalitions
(line 9) and retrieves the optimal coalition S∗i corresponding to this optimal
configuration (line 10). Next, each agent locally checks for the emptiness of
the core (lines 11-12). The core is detected as empty if ai detects that its
payment conditioned to the decision of ancestors (Pi(x

∗
i )) is less than the

best payment he can get considering all its local configurations (ρi). Finally,
each agent ai can start computing the offers of coalitions requiring some
agent down the tree. For each of its leading coalitions S ∈ Li, the offer
of agent ai for S is distributed among independent offers for S’s required
coalitions (Reqi(S)). Each agent ai computes the offer of a coalition S for a
required coalition S′ as the value of its payment function for S minus the a′is
payment (notice that this includes demands from all agents) canceling the
difference between the joint demand for xS′ and coalitions still not offered
(xS′∩o) and the joint demand of coalitions still not offered (xo).
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Thus, in Figure 4.3(b), a0 computes the offer of {0, 1} for {0, 1} (the only re-
quiring coalition of {0, 1} in X1 is itself) as the value of its payment function
for {0, 1} (P0(x01)) minus its payment (ρ0) whereas subtracting the demand
from coalition {0, 1}. Notice that whenever S is a basic coalition the amount
offered to S is just the value of agent ai for S minus ai’s payment. In con-
trast, when the coalition is composite the offer is distributed among more
than one required coalitions. For example, in Figure 4.3(b), the offer of a0
for its leading coalition {0, 1, 3} is distributed among its requiring coalitions
{0, 1} and {0, 3}. After computing offers, each agent ai sends for each of its
basic coalitions {S ∈ Li|Reqi(S) = {S}}, an offer message to the agent in
S \{i} with higher position in PT (lines 36-39). At the end of the algorithm
(line 41), agents run a distributed procedure2 to propagate the core status
across the graph (emptiness of the core is propagated through the whole
graph).
In this way, SCF-Graphs builds an optimal and stable solution, if one exists,
otherwise the emptiness of the core is detected and propagated among all
agents, as stated by Theorem 4.

Theorem 4. Given a game on a graph CG = 〈A(G), v, F (G)〉, if the core
of CG is not empty, the outcome produced by SCF-Graphs belongs to the
core of CG; otherwise SCF-Graphs outcomes the optimal coalition structure
of CG detecting the emptiness of the core.

2Any distributed algorithm used for convergence detection can be used for that purpose.
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Algorithm 5 SCF-Graphs

Each ai knows 〈ap, Xi, ψi(Xψi), Req i, ρmin〉
1: EMPTY COREi ← false
2: ∀xS ∈ Xψi : o(xS)← 0
3: Wait for a demand message from each child aj ∈ Chi (dj→i(Sepji))
4: 〈pi(XCi

), ρi〉 ← demand propagation()

5: while XCi
6= Xψi

∨Xi 6= Xψi
do

6: handle messages()

7: 〈pi(XCi
), ρi〉 ← demand propagation()

8: end while
9: X∗i = arg maxXi,X∗i

pi(Xi)

10: S∗i = γ(X∗i )
11: if pi(X

∗
i ) 6= ρi then

12: EMPTY COREi = true
13: end if
14: for all xS ∈ Xi do
15: if Reqi(xS) = ∅ then
16: OFFERi ← pi(xS = 1, Xi = 0)− ρi −

∑
j∈Chi

dj→i(xS = 1, Xi = 0)
17: if S∗i = S then
18: OFFERi ← OFFERi + ρmin · |S \ {ai}|
19: end if
20: o(xS)← max(o(xS), OFFERi)
21: else
22: X\o ← Reqi(xS)
23: for all xS′ ∈ Reqi(xS) do
24: X\o ← X\o \ {xS′}
25: hi =

∑
j∈Chi

dj→i(xS = 1, xS′ = 1, X\o = 1, Xi = 0)
26: ki =

∑
j∈Chi

dj→i(xS = 0, xS′ = 0, X\o = 1, Xi = 0)
27: OFFERi ← pi(xS = 1, Reqi(xS) = 1, Xi = 0)− ρi − hi + ki
28: if S∗i = S then
29: OFFERi ← OFFERi + ρmin · |S′ \ {ai}|
30: end if
31: o(xS′)← max(o(xS′), OFFERi)
32: end for
33: end if
34: end for
35: ρi ← ρi − ρmin · |S∗i \ {ai}|
36: for all xS ∈ Xi|Reqi(xS) = ∅ do
37: Let aj be the agent in S \ {ai} with highest level
38: oi→j ← oi→j ∪ 〈xS , o(xS = 1), x∗S〉
39: end for
40: Send OFFERi messages to respective agents
41: EMPTY COREi ← propagate core status(EMPTY COREi)

42: if EMPTY COREi = true then
43: ρi ←∞
44: end if
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Algorithm 6 handle messages

Wait for messages()

for all For each message received do
if offer oj→i(Sepji) message received then

if aj = ap then
ai ← root

end if
for all 〈xS , o(xS), x∗S〉 ∈ oj→i do

Xi ← Xi ∪ xS
o(xS = 1)← o(xS)
X∗i ← X∗i ∪ (xS = x∗S)

end for
end if

end for

Algorithm 7 propagate core status

Wait from EMPTY COREj from each child aj ∈ Chi
if ∃k : EMPTY COREk = true then

EMPTY COREi = true
end if
if ai 6= root then

Send EMPTY COREi to ap
Wait from message from ap
EMPTY COREi ← EMPTY COREp

end if
Send EMPTY COREi to all children Chi

Algorithm 8 demand propagation

pi(XCi) = ψi(Xψi
)⊗⊗j∈Chi dj→i(Sepji)⊗

⊗
xS∈X

\r
i

o(xS)

ρi = maxXi pi(Xi)
if ai 6= root then

di→p(Sepip) = maxXi pi(XCi)− ρi
Send di→p(Sepip) to ap

end if

50



Chapter 5

Application to the Energy
Market

In this chapter we will show how the aforementioned theoretical notions and
solution techniques – especially the GDL-based message-passing algorithm
– can be applied to a real-world case study: the energy market. We will
focus on a scenario in which a group of energy customers have a demand of
energy supplies (e.g. electrical power), and need to buy them in a way that
minimizes their costs, forming coalitions. We assume that energy customers
are organized in a social network. The social network models the knowledge
relationships between energy customers and restricts the structure of possi-
ble coalitions they can form. This network can be trivially represented by a
graph with certain particular properties, formally discussed in Section 5.2.

It is easy to see that this setting has a natural modelization in coalitional
games on graphs defined in Section 4.1.1, in which players are considered
to be selfish, thus setting us in a non-cooperative environment. As said
before, real energy customers have little interest in increasing system gain,
as their main concern is to maximize their own utility, with the simple goal
of having a cheaper bill. Therefore, the concept of stability introduced in
Section 3.4.1 assumes a key role, since it is not possible to impose a solution
“from above”, as it would be immediately rejected by the agents. Rather,
the goal is to find an appropriate distribution of payments that incentives
single energy customers to maintain the current structure, as any deviation
would worsen their payoff, making energy more expensive.

5.1 The Problem

In all current electricity grids this balance is achieved by varying the supply-
side to continuously match demand. The amount of demand required on a
continuous basis is usually carried by the baseload stations owing to low
cost generation, efficiency and safety.

51



However, these stations are slow to fire up and cool down, so they are not
able to match the peakload periods that exceed this baseload that require, in
contrast, the use of expensive, carbon-intensive, peaking plant generators.
Although only running when there is high demand, these peaking plant
generators are responsible of most part of consumers electricity bill.

Along this line, the vision of the smart grid includes demand-side peak-
shaving strategies such as real-time pricing or profile’s based tariffs to en-
courage consumption such that the peaks on demand are flattened [1]. A
flattered demand results in a more efficient grid not only with lower carbon
emissions but also with lower prices for consumers. Hence, some works [57,70]
focused on techniques that flatten individual consumer demand by automat-
ically controlling home domestic or micro-storage devices. Unluckily, since
each consumer independently optimizes its own consumption, the effective-
ness of this approach has a clear limit on the consumer’s restrictions and
comfort (e.g. it will be unavoidable to get a consumption peak in the non-
working hours of consumers).

Against this background, the problem of how the grid efficiency can be
further improved from a social perspective is investigated. In particular, we
explore the idea of allowing consumers to join into coalitions with other
consumers with complementary energy needs. Then, a group of consumers
can act in the market as a single virtual consumer with a flattened demand
for which it gets much better prices. As part of the smart grid community,
electricity consumers have already access to smart meters that allow them to
monitor its (load) energy profile1 in an hour-day basis (Figure 5.1). Thus,
the energy profile of a customer ai can be represented as a vector Ei =
{e1i , . . . , eTi } where eti is the amount of energy consumed at time slot t and
T is the length of the considered interval.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Figure 5.1: Typical energetic profile over 24 hours

1 The load energy profile is a graph of the variation in the electrical load versus time.
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5.2 Social networks

Given the huge recent success of social networks (e.g. at the time of writing
Facebook has more than 500 millions users), consumers can use them as free
interaction tools to self-organize into energy coalitions.

Social networks not only provide a way of interaction among energy con-
sumers but also restrict coalition membership by reflecting realistic barriers
to the formation of certain coalitions. In particular, consumers may not want
to join coalitions with unknown consumers for which they do not have any
source of trust regarding their reported profiles or their capacity to meet
their payment obligations. In contrast, if the social network is used to re-
strict coalition membership, customers join coalitions of friends of friends,
thus being sure that someone they know directly is always involved.

Social networks have been used in many different fields of study, such
as biology, communication studies, economics, information science, organi-
zational studies, and sociology. Given this wide variety of topics and formal-
ization, we will focus only on two categories of social networks, which have
been deeply studied and can be modeled through mathematical procedures:
scale-free networks and small-world networks2.

5.2.1 Scale-free networks

Definition 16 (Scale-free network). A scale-free network is a network in
which the degree distribution follows a power law, at least asymptotically.
That is, the fraction P (k) of nodes in the network having k connections to
other nodes goes for large values of k as:

P (k) ∼ ck−γ

where c is a normalization constant and γ is a parameter whose value is
typically in the range 2 < γ < 3, although it may lie outside these bounds.

Scale-free networks are believed to be the model of many real-world net-
works, including World Wide Web links, biological networks, and social net-
works, although the scientific community is still discussing these claims as
more sophisticated data analysis techniques become available [25].

Many models have been proposed as mechanisms to explain conjectured
power law degree distributions in real networks, such as preferential attach-
ment, which refers to the process according to which the likelihood of con-
necting to a node depends on the node’s degree. For example, a web page
will more likely include hyperlinks to popular documents with already high
degrees, because such highly connected documents are easy to find and thus
well known.

2In the experimental cases, these topologies will the tested against random networks,
which will be used as a benchmark
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This mechanism is the base of the model proposed by Barabàsi and Al-
bert [3], who studied the growth of social network and provided a simple
algorithm to generate one that follows the properties of scale-free networks.
Starting from a network of m0 initial and connected3 nodes, with m0 ≥ 2,
new nodes are added to the network one at a time. Each new node is con-
nected to m existing nodes with a probability that is proportional to the
number of links that the existing nodes already have. Formally, the proba-
bility pi that the new node is connected to node i is:

pi =
ki∑
j kj

Note that m is a parameter of the generator, which determines the final
density – number of edges divided by the number of nodes – of the graph.
In some formulation, exactly m edges are added at each step, in which case
the density can be computed a priori ; otherwise, a random number in the
set {1, . . . ,m} is chosen, making the number of edges in the final graph
unpredictable. The resulting network can be shown to be scale-free, with a
degree distribution of:

P (k) ∼ k−3

The example network shown in Figure 5.2 has 20 nodes and has been gen-
erated with the Barabàsi-Albert model, adding a maximum of 2 nodes per
step.

Figure 5.2: Scale-free network example

3If a node is not connected, it will always remain disconnected from the rest of the
network. For example the initial network could be a tree of m0 nodes.
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5.2.2 Small-world networks

An alternative model to characterize social network is provided by small-
world networks, whose topology is formed in a way such that most of the
nodes are not neighbors of one another, but most of them can be reached
from every other by a small number of hops or steps.

Definition 17 (Small-world network). A small-world network is a network
where the typical distance L between two randomly chosen nodes (the number
of steps required) grows proportionally to the logarithm of the number of
nodes N in the network, that is:

L ∝ logN

In the context of social interactions, the formation of small-world networks
is the result of strangers being linked by a mutual acquaintance. Many em-
pirical graphs are well-modeled by small-world networks. Social networks,
wikis4 such as Wikipedia, and gene networks all exhibit small-world charac-
teristics.

This kind of networks were deeply studied by Watts and Strogatz [73],
who identified two structural parameters used to classify the features of a
particular network, namely the clustering coefficient, a measure of degree to
which nodes tend to cluster together, and the average shortest path length.
They also noticed that in purely random graphs build with the Erdős-Rényi
model [29], both these parameters are low, while the clustering coefficient
measured in many real-world networks significantly higher than expected,
maintaining a small average shortest path length.

These are the main features enforced by the Watts-Strogatz model: Fig-
ure 5.3 shows an example of a small-world network of 20 nodes generated
with this algorithm.

The typical ring-like structure is the consequence of the initial ring lattice
of n nodes, connected to k other ones (k2 per side, imposing that k must be
even), which is subject to a rewiring process, which replaces some edges
with a probability given by the parameter β.

The aforementioned properties make cliques, and near-cliques, very likely
to form in this type of graphs. In addition to this, there are several other
features that small-world networks tend to have: typically, there is an over-
abundance of hubs – nodes in the network with a high number of connections
(known as high degree). These hubs serve as the common connections me-
diating the short path lengths between other edges. By analogy, the small-
world network of airline flights has a small mean-path length (i.e. between
any two cities you are likely to have to take three or fewer flights) because
many flights are routed through hub cities.

4A wiki is a website whose users can add, modify, or delete its content via a web browser
using a simplified markup language or a rich-text editor.
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Figure 5.3: Small-world network example

5.3 Buying in the Energy Market

In economic terms, electricity is a commodity5 capable of being bought, sold
and traded. Thus, we refer as energy market as the system that allows to buy
(through bids), sell and make short-term trades related to energy, generally
in the form of financial or obligation swaps. Bids and offers use supply and
demand principles to set the price. Long-term trades are contracts similar
to power purchase agreements and generally considered private bi-lateral
transactions between counterparties. Wholesale transactions (bids and of-
fers) in electricity are typically cleared and settled by the market operator
or a special-purpose independent entity charged exclusively with that func-
tion. Market operators do not clear trades but often require knowledge of
the trade in order to maintain generation and load balance.

Electricity is by its nature difficult to store and has to be available on
demand. Consequently, unlike other products, it is not possible, under nor-
mal operating conditions, to keep it in stock, ration it or have customers
queue for it. Furthermore, demand and supply vary continuously.

There is therefore a physical requirement for a controlling agency, the
transmission system operator, to coordinate the dispatch of generating units
to meet the expected demand of the system across the transmission grid. If
there is a mismatch between supply and demand the generators speed up or
slow down causing the system frequency (either 50 or 60 hertz) to increase
or decrease.

5From the economic point of view, a commodity is the generic term for any marketable
item produced to satisfy wants or needs.
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If the frequency falls outside a predetermined range the system operator
will act to add or remove either generation or load. In addition, the laws of
physics determine how electricity flows through an electricity network. Hence
the extent of electricity lost in transmission and the level of congestion on
any particular branch of the network will influence the economic dispatch
of the generation units.

The scope of each electricity market comprises the transmission grid
(or network) that is available to the wholesalers, retailers and the ultimate
consumers in any geographic area.

5.3.1 Wholesale electricity market

A wholesale electricity market exists when competing generators offer their
electricity output to retailers. The retailers then re-price the electricity and
take it to market. While wholesale pricing used to be the exclusive domain
of large retail suppliers, increasingly markets are beginning to open up to
end-users. Large end-users seeking to cut out unnecessary overhead in their
energy costs are beginning to recognize the advantages inherent in such a
purchasing move, moreover, recently consumers have started buying elec-
tricity directly from generators too.

Buying wholesale electricity is not without its drawbacks (market un-
certainty, membership costs, collateral investment), however, the larger the
end user’s electrical load, the greater the benefit and incentive to make the
switch. Wholesale markets usually offer two different approaches for the
buying strategies users can adopt: a short-term market, where buyers can
obtain relatively small quantities of energy, usually intended to be spent in
24 hours, and a long-term market, in which larger amounts of energy can
be bought for a longer interval of time. In common terminology, one usually
refers respectively to day-ahead market and forward market.

The system price in the day-ahead market is in principle determined by
matching offers from generators to bids from consumers at each node to
develop a classic supply and demand equilibrium price, usually on an hourly
interval, and is calculated separately for subregions in which the system
operator’s load flow model indicates that constraints will bind transmission
imports.

On the other hand, forward market tends to be more risky, due to an
high volatility6 consequence of the complexity of the system, possible peak
demand and supply shortage; thus, as a common financial rule, prices are
usually cheaper on this market. Users can access prices in real-time, simply
accessing wholesale markets websites [2], which offer detailed reports and
data regarding the current prices of short and long term market, together
with information about purchased volumes of energy (Figure 5.4).

6Prices vary significantly over a relatively small period of time
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Electricity customers and power producers tend to protect themselves from
forward market instability buying energy in an aggregate form, thus forming
the appropriate groups – or coalitions – satisfying everyone’s demands is a
fundamental task.

Long-term market offers a wide variety of contracts available to the in-
vestors, however the simplest and most commonly used form is represented
by fixed price forward contracts, in which parts agree to trade a good – e.g.
electric energy – at a specified future time with a price agreed today. Thus,
the importance of having a flatter, more predictable usage profile becomes
clear, since it allows groups of customers to buy larger stocks at a smaller
price, minimizing the wasted amount of energy, which is also important from
an ecological point of view. Thus, for a correct evaluation of a given solu-
tion, a precise, formal method that associates a coalition with its quality is
needed. We will now introduce some of the metrics defined for this purpose,
which have been adopted in the experimental tests.

Average
€/MWh

Daily Average 75.73
87.42
64.03

Minimum 40.33
Maximum 125.12

Total Average
MWh MWh

National 1,395,416 58,142
Foreign 170,372 7,099
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Figure 5.4: Example of a report with price profile and volume exchange data

5.4 Metrics

Another fundamental problem addressed in this thesis is the choice of a
appropriate metric to evaluate how the considered coalition is suitable to
users’ demands. From a formal point of view, the metric simply represents
the characteristic function of the considered game (as defined in Definition
1). As pointed out before, “good” coalition are groups whose joint energy
profile7 is “flattened”, because more energy can be bought in a cheaper way
on the forward market, so the metrics described hereafter have the primary
objective of quantifying this feature, attempting to assign a smaller value to
a profile with a peaky behavior, while encouraging the formation of coalitions
whose profiles are more regular.

7Analogously to single customer coalitions, we represent the joint energy profile of a
coalition S as a vector ES = {e1S , . . . , eTS} where etS =

∑
i∈S e

t
i.
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In addition, another eligible property of the metric is non-superadditivity:
as described in Section 3.3.2, in superadditive games the optimal coalition
structure is always given by the grand coalition. In this context, it would im-
ply putting every agent in the same group, making everyone buying energy
together, which is just not reasonable. Furthermore, in real-world environ-
ments the complex dynamics and the increased coordination costs of bigger
groups make the setting intrinsically non-superadditive.

We will now present some metrics used in the actual implementation of
the GDL algorithm presented in Chapter 4 and adopted for the empirical
test described in Chapter 6, specifically the load diversity factor and the
user price factor.

5.4.1 Load diversity factor

The first approach used in the definition of a metric is to focus on the
“smoothness” of the aggregate profile obtained summing the energetic pro-
files.

The load diversity factor of a coalition S (LDF (S)) is computed as:

Definition 18 (Load diversity factor).

LDF (S) =

∑
i∈SmaxtEi

maxtES
+ |S| − 1 (5.1)

where Ei refers to the energy profile of the user i and ES refers to the joint
energy profile of coalition S.

It is easy to show that the quantity computed by the fractional term is
always ≥ 1; intuitively, if the sum of the peaks of single users (given by
the numerator) is close to the maximum of the joint profile, this value is
lower, meaning that the maximum values of the individual profiles are posi-
tioned at the same time. Since this is the exact situation we want to avoid,
the load diversity factor needs to be maximized, making it suitable for the
aforementioned applications.

The additional |S| − 1 is due to the fact that, if we only consider the
fractional term, the LDF of a single coalition is exactly 1, while, in general,
for coalition of n users it is < n, making more profitable for players to go
always alone.

Since we want to avoid this situation, encouraging the formation of
groups, we reward each coalition with an additional value equal to the num-
ber of single coalitions avoided. For example, if agent 1 joins agent 2 in the
coalition {1, 2}, one single coalition is avoided, i.e. an empty coalition must
be considered, assumed to have a value of 1. In general, it is easy to see that
if a coalition S of n users is formed (|S| = n), n − 1 single coalitions are
avoided, increasing the value of S of |S| − 1.
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From the test performed, load diversity factor allows to form coalition with a
good quality for the system, but the value computed has no correlation with
the final cost paid by the members of the group. Moreover, the interpretation
of the empty coalitions is not clear and cannot be rigorously justified.

For these reasons, a different metric has been developed, the user price
factor, which effectively captures the monetary gain users can obtain in the
formation of coalition to buy from the energy market.

5.4.2 User price factor

The value of a coalition S, v(S), is the total payment that the set of con-
sumers need to carry out to cover the demand of their joint energy profile.
As described before, we consider that customers buy directly their electricity
in two different markets: the forward market and the day-ahead market. In
the forward market, consumers in a coalition S buy in advance the fix con-
tinuous amount of energy of their joint energy profile, base(S), for a better
price. The amount of energy that exceeds this baseload, peak(S), is bought
in the day-ahead market.

Definition 19 (User price factor). The user price factor of a coalition S
(UPF (S)) is computed as:

UPF (S) = −base(S) · pF − peak (S) · pDA − k (S) (5.2)

where pF and pDA are the unit energy price in the forward and the day-ahead
market respectively.

Since pF < pDA, the flattered the energy profile, the most a coalition of
consumers can buy in the forward market and the lower the payment of the
coalition. The term k (S) is intended to represent the negative contributions
due to the additional costs necessary to manage a bigger coalition, such as
increased coordination costs and more complex dynamics inside the coali-
tion. Thus, k(S) must be proportional to the size of the coalition, and in
this work it is assumed k(S) = (|S| − 1) · pFT , where T is the length of the
considered time interval.

From the tests shown in Chapter 6, user price factor has performed well,
allowing the formation of mid-sized coalition, thus avoiding superadditivity.
We remark this is simply the result of reasonable considerations, consequence
of the real-life behavior of big groups of agents.

It is important to note that Definition 19 does not specify how the actual
quantity base(S) is computed, allowing the users to choose from different
strategies for the transactions with the forward market. For example, a team
could adopt a completely risk-free strategy, buying from the long term mar-
ket only the quantity of energy it is absolutely sure to consume; in this case,
base(S) = mintES · T .
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Rather, a more risky approach can be used: a coalition might choose to buy
more energy from the forward market than the continuous quantity it is sure
to consume (represented by the minimum). Thus, a coalition S buys more
energy in the forward market but some of this energy is not expected to be
consumed. Figure 5.5 shows an example of this strategy: the dark amount
represents the safer base load, corresponding to the minimum of the profile;
then if the light amount is bought, following a more risky approach, more
energy will be obtained at a cheaper price, but the marked quantities are
not expected to be consumed by the coalition and hence, will be wasted.
Although buying more energy than the expected consumption, this strategy
can be perfectly rational for agents, in order to get better prices, if the
amount of risk taken is directly proportional to the ration between the price
of the energy in the forward market and the price in the day-ahead market.
Thus, the base load to buy in the forward market to maximize the coalition
gain is the maximum amount such that at least the fraction pF

pDA
is expected

to be consumed.

15:00 18:00 21:00 00:0000:00 03:00 06:00 09:00 12:00

Figure 5.5: Example of different base loads for the same energy profile

Algorithm 9 shows how to easily compute this quantity assuming the pro-
file E is discretized in m time parts, thus considering it as an array of m
elements. Then, after ordering the m elements in descending order, the base
load is the element in position m · pFpDA

, multiplied for the length of the time
interval. Coherently, if pF = pDA, then the algorithm returns as baseload
the minimum quantity that is expected to be consumed.

Algorithm 9 Computation of a risky baseload

Sort ES in descending order
n← bm · pF

pDA
c

base(S)← EnS ·m
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5.5 Demonstration Application

To have an interactive visual tool for coalition formation in the energy mar-
ket, we developed a platform that allows energy consumers to organize into
stable energy profile coalitions. The demonstration application is written in
Java and permits the user to interact with the coalition formation process
and have detailed informations about the optimal outcome and the possible
gains that can be obtained.

The demonstration starts by asking the user the number of energy con-
sumers for the simulation (Figure 5.6). Moreover, the user can choose be-
tween creating the social network randomly, or, alternatively, create a user
defined social network from scratch.

Figure 5.6: Initial dialog of the simulator application

In both cases, the platform generates a set of nodes, one per energy con-
sumer, and allows the user to modify the network by adding/removing links
in an easy way. Each node has an energy profile loaded from real data char-
acterizing the domestic electricity market and usage patterns of households
in the United Kingdom.

Once the coalition formation scenario is set, the simulation starts the
SCF-Graphs algorithm that organizes energy consumers into stable optimal
coalitions. Upon convergence, energy consumers in the same coalition are
colored with the same color. For example, observe that in Figure 5.7, the
coalition {0, 1, 3, 4, 5, 6} was formed, (the grouped agents are all colored
in red), whereas consumer 2 is on its own. The interface also highlights the
pseudotree used by the algorithm (showing bolded edges) with the associated
root node. On the right lower corner, the application also shows the average
user gain – that is the gain that represents the consumer assigned payoff
with respect to the value of its individual energy profile.
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Figure 5.7: The simulator main interface

By clicking on a node, the GUI displays statistical data related to the spe-
cific energy consumer such as its coalition, the coalition’s value and the indi-
vidual payment that the consumer contributes to the coalition. Consumers
payments are set in such a way that consumers do not have any incentive to
deviate. Finally, the interface also allows to visualize the energetic profiles
of coalition members (see Figure 5.8). Each chart plots a consumer energy
profile, delimited by a red line, and the joint coalition energy profile, de-
limited by a blue line. The difference between the joint and the individual
profile is filled in the same color used to mark the considered partition (red
in the example). The GUI offers the user an effective way of restarting sim-
ulations after reconfiguring the network topology, testing how the existence
or the nonexistence of a particular link affects the emerging coalitions and
consumers gain.

As a simulator, this platform provides to the users with a proof of con-
cept of what we can do already today as energy consumers in order to
get cheaper and greener energy. Furthermore, it presents the decentralized
coalition formation problem among energy users to the community as an
exciting real-world domain for the applicability of multi-agent technology.
This application has been the subject of a demo paper submitted at 11th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2012) [14] and is available for download as an executable JAR
file at http://profs.sci.univr.it/~farinelli/energySCF.jar. More-
over an illustrative video, describing the simulator and the related topics
can be viewed at http://www.youtube.com/watch?v=FT25oETMkfw.
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Figure 5.8: The coalition energy profile inspector
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Chapter 6

Results

In this chapter we will present the results of the empirical experiments con-
ducted to test the quality of the presented coalition formation technique.
In particular, two fundamental features of the solutions are addressed: the
average user gain and the coalition structure. Intuitively, average user gain
refers to the effective gain users have obtained adopting the coalition orga-
nization proposed by the given outcome, with respect to a naive solution
where only single coalitions are formed.

Definition 20 (Average user gain). The average user gain of set of agents
A with the payoff vector x is computed as:

AUG(A, x) =

∑
i∈A(xi − v({i})

|A| (6.1)

where xi refers to the individual payment of agent i, and v({i}) refers to
the value of the coalition with agent i alone. In addition, the average percent
user gain refers to the percentual gain obtained by users w.r.t. the average
value of single coalitions (APUG(A, x) = AUG(A,x)·|A|∑

i∈A v({i})
· 100).

On the other hand, the coalition structure analysis focuses on the size of the
computed coalitions, in terms of minimum, maximum and average dimension
of the groups.

6.1 Problem generation

To investigate the sensitivity of the coalition formation process with respect
to the underlying network topology, we evaluate our model on three different
network models. Moreover, for each network topology we analyze networks
with different density levels. Formally, the density of a graph is defined as
the ratio between the number of links and the number of agents in the graph
( |E||A| ).

65



In more detail, in our experiments we test our model on the following net-
work configurations:

Random Networks: Graphs are created by randomly adding a number of
links d for each agent. Densities used in this case are : d = 1 (low), d = 2
(medium) and d = 3 (high).

Scale Free Networks: Graphs are created by using an implementation of
the Barabàsi-Albert model. At each step, a node is added and attached to
d neighbors using a biased random selection giving more chance to a node
if it has a high degree. Graphs are generated using three different densities:
(d = 0.92, low), (d = 1.75, medium) and (d = 3.17, high).

Small-World Networks: Graphs are created by following the Watts and
Strogatz model. This model generates a ring of graph where each node is
connected to its k nearest neighbors in the ring (k2 on each side, which means
k must be even). Then it process each node of the ring in order following the
ring, and “rewiring” each of their edges toward the not yet processed nodes
with randomly chosen nodes with a rewiring probability of 0.1. Graphs are
generated using three different values for parameter k: k = 2 (d = 1, low),
k = 4 (d = 2, medium) and k = 6 (d = 3, high).

Notice that whereas scale free and small-world networks are known to cap-
ture some characteristics of social networks, random networks constitute a
more synthetic model for our domain. All experiments are run using net-
works of 12 nodes. For each instance, the energy profile of each node is
randomly selected from a real dataset composed of energy profiles charac-
terizing the real domestic electricity consumption of 5000 households in the
United Kingdom. Each energetic consumer has been monitored for a time
period of a month (December 2009), measuring a the value of power con-
sumption every 30 minutes, for a total of 48 daily time slots. The initial
data contained some corrupted entries, due to a problem with the sensor,
so, before running any experiment, the data has been filtered keeping only
meaningful measurements.

6.2 CPLEX verification

To test the correctness of the algorithm presented in Chapter 4 and its
JAVA implementation, all the results have been tested with an alternative
technique, to check that the solution obtained are coherent. The same coali-
tion formation problem has been formalized using linear constraints and
solved with Dantzig simplex algorithm [49], implemented with IBM ILOG
CPLEX Optimization Studio. We remark that CPLEX implementation cur-
rently represents the state of the art in linear programming optimization,
thus its running times are not comparable with the test case.
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6.3 Market’s parameters

For the hereafter described experiments, user price factor has been used
for compute the coalitional value. As described in Section 5.4.2, user price
factor has two important parameters: pF , the price of the electricity in the
forward market, and pDA, referred to day-ahead market (although the price
of electricity in the day-ahead market varies on each time slot, we consider
here that pDA is calculated by averaging the hourly price of a day). Moreover,
in addition to the market prices, another sensitive parameter is the choice
of the strategy to decide which is the base amount to buy in the forward
market (defined through fraction parameter p). Then, in our experiments,
we explore three different market conditions:

• M1: pF = 70, pDA = 80, p = 1

• M2: pF = 70, pDA = 80, p = 0.875

• M3: pF = 1, pDA = 2, p = 0.5

Notice that whereas in M1 agents follow a risk-free strategy (p = 1), in
M2 and M3 agents takes the maximum much risk that gives them a positive
expected gain (p = pF

pDA
). Regarding market prices, in M1 and M2 prices used

are those of current electricity markets in Italy [2] whereas M3 explores a
different scenario in which buying in the forward market is more incentivized
with better prices. As a consequence, the maximum relative percent gain1

an agent can get in M1 and M2 is of 12.5% whereas in M3 is of 50%.

6.4 Results

Using the different configurations explained in section above, we evaluate
our model by performing repeated simulations (50 instances per graph con-
figuration) and analyzing the following features.

Consumer’s gain

Figure 6.1 show the results for 12 agents on a random, scale-free and small-
world networks in the three different market scenarios respectively. We also
plotted the standard error of the mean as a measure of the variance in
each graph. Only data regarding instances with non-empty core are plotted.
Observe that in all configurations, although the average percent user gain
is increased with density, this increment is not significant. Moreover, the
average percent user gain is much higher (around 10%) in M3 market than
not in M1 and M2 (around 1%).

1The maximum relative percent gain is the difference between the cost of buying all
demand in the day-ahead market and the cost of buying all demand in the forward market
divided by the cost of buying all demand in the day-ahead market 100 · pDA−pF

pDA
.
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Core emptiness

Table 6.1 shows the percentage of instances under each configuration for
which the core was detected as empty. Notice that in all network topolo-
gies, the number of instances for which the core is empty increases with
the density of the network. These results are coherent with the well-known
results that any acyclic network (which has by definition the lowest density)
is guarantee to have a non-empty core [27]. As we increase the density the
number of cycles also increase and results show that the probability of core
emptiness is higher. Regarding different network topologies, we observe that
the number of instances with core emptiness is higher in scale free networks,
where the links are concentrated on hubs, than not on random and small-
world networks, where each node in average have the same degree. Finally,
we also observe that the number of instances with core empty is much higher
on M1 and M2 than not in M3. Although we need to perform a deeper anal-
ysis on these results, they lead to the hypothesis that the more the distance
of prices in the market the less the probability of having an empty core in
the coalitional game.

Topology Density
% Empty Core
M1 M2 M3

Random
Low 8% 0% 0%

Medium 50% 26% 6%
High 56% 44% 10%

Scale-Free
Low 0% 0% 0%

Medium 52% 22% 2%
High 46% 38% 12%

Small-World
Low 8% 6% 2%

Medium 46% 18% 8%
High 46% 48% 6%

Table 6.1: Percentage of instances with empty core under different config-
urations.

Structure of energy coalitions

In this section we analyze the structure of the energy coalitions obtained in
the experiments. For each configuration, we plot the mean of the minimum,
average and maximum size of coalitions formed. Figure 6.2 plots the results
for networks of 12 agents on a random, scale free and small-world networks
in two different market scenarios. We also plotted the standard error of the
mean as a measure of the variance in each graph. Market scenario M3 is
omitted because in this case we detected that the gran coalition was always
formed in all tested instances.
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Since the difference between pDA and pF in M3 is relatively high, buying
more energy in the forward market is very profitable, leading to the forma-
tion of bigger coalitions. In contrast we observe that for markets M1 and
M2, the market conditions lead to coalitions of middle size in all network
structures. We also observe that as we increase the density of the network,
more coalitions of middle size are composed whereas in low densities agents
tend to compose larger coalitions.

6.5 Plots

(a) Random Graphs M1 (b) Scale Free M1 (c) Small World M1

(d) Random Graphs M2 (e) Scale Free M2 (f) Small World M2

(g) Random Graphs M3 (h) Scale Free M3 (i) Small World M3

Figure 6.1: Graphs showing the average percent gain of consumers on differ-
ent topologies and densities under market conditions M1 (a)-(c), M2 (d)-(f)
and M3 (g)-(i).
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(a) Random Graphs M1 (b) Random Graphs M2

(c) Scale Free M1 (d) Scale Free M2

(e) Small World M1 (f) Small World M2

Figure 6.2: Graphs showing the minimum, average and maximum size of
coalitions formed on different topologies and densities under market condi-
tions M1 (a)-(c), M2 (d)-(f).
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Chapter 7

Conclusions and Future
Work

In this thesis we have shown how the stable coalition formation can be
effectively applied to a real-world application such the purchase of energy
on the wholesale electrical marked.

Users with complementary consumption profiles can join together in a
common group, forming a coalition whose aggregate energy demand is more
regular and flattened. Thus, more of this energy can be retrieved from the
long term market, which provides large amounts of energy at a cheaper
prices, granting the single agents a real monetary advantage. Also, the re-
quest for expensive, carbon-intensive peaking plants generators is reduced,
providing a great benefit for the environment.

To help the solving process, the space of research has been reduced by
means of a social network, which models the social interactions among the
users. Social networks not only provide a way of connecting energy con-
sumers but also restrict coalition membership by specifying realistic con-
straints to the formation of certain groups. In particular, consumers may
not want to join coalitions with unknown consumers for which they do not
have any source of trust regarding their reported profiles or their capacity
to meet their payment obligations.

The work here presented is very promising and has given good results,
as pointed out by the empirical tests. The provided solutions can effectively
lower the cost single users have to pay for their electricity bill, with a promis-
ing effect from the ecological point of view, due to the limited pollutant
emissions.

Moreover, the considered approach is suitable to be applied to real-world
scenarios, since it assumes to deal with selfish agents, a typical feature of
real energy customers. We remark that the pursuit of both optimality and
stability has never been covered in literature, while this work addresses the
two problematics together.
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Nevertheless, there are many possibilities for future development in this di-
rection. The theoretical representation defined in Chapter 4 provides a smart
intuition in the context of cooperative games on graphs, but can be further
improved to allow a better scalability with respect to the dimension of in-
stances used as inputs for the problem. At the current state, our technique
can solve general graphs of 12-13 nodes, with a density of 2.

In addition, the computational complexity of the approach can be low-
ered (at the expense of the accuracy) adopting approximated or non-complete
solving techniques, which may provide a good – but not optimal – solution
in a reasonable amount of time, even for bigger instances than the ones
tractable at the moment.

Focusing on the implementation, a very promising direction of improve-
ment may be represented by the adoption of thread-intensive techniques
provided by the GPU computing. Due to the high parallelization charac-
teristics of the routine used in the coalition formation process, the use of a
massive multi-threading implementation (such as CUDA or OpenCL) would
grant a great speed-up, though the theoretical computational complexity
would not be affected.

Finally, the metrics proposed in Section 5.4 (especially the user price
factor) have proven to be effective in the tests, but alternative forms of
evaluation of the coalitions are not to be excluded, for example considering
features other than the simple price paid by the customers or managing the
risks with different approaches.

In conclusion, the work of this thesis has given a great contribution in the
field of stable coalition formation theory, especially considering the approach
of new and interesting problematics in the energetic domain and providing
a novel and brilliant solving technique, which may be the starting point of
many future developments.
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