
Graphical Explanations for MILP

A Supplementary Material

A.1 Problem formalisation

In this section, we provide the MILP formulation of both use cases of our exper-
imental evaluation.

Resource-Constraint Project Scheduling Problem We base our formali-
sation on the single mode variant of the RCPSP problem in [23]. We consider
a project with J activities to complete. W.o.l.o.g. activity 1 is the only start
activity, and activity J is the only finish activity. Each activity j has a given
processing time dj , and a set of Rj resources which j needs to be completed.
Moreover, each activity j has a set of activity predecessors Pj , which implies that
activity j can only start when each of its predecessors h ∈ Pj has been completed.
The planning horizon is divided into T time units labelled as t = 1, . . . , T , where
T is a makespan upper bound. Given the precedence relations and the activity
duration, we can calculate the time windows, i.e., intervals [EFj , LFj ], with the
earliest and latest finishing times of each activity. In addition, we consider that
in each time t there are Kr units of resource r ∈ R available. A given activity j
requires an amount kjr of resource r per period. Given those elements, the goal
is to find a feasible schedule that minimises the total duration, i.e., minimises
the finishing time of activity J .

We present the formalisation of the RCPSP as follows.

minimise Φ(x) =

LFJ∑
t=EFJ

t · xJt (5a)

s.t.
LFj∑

t=EFj

xjt = 1, j = 1, . . . , J, (5b)

LFh∑
t=EFh

t · xht ≤
LFj∑

t=EFj

(t− dj) · xjt, j = 2, . . . , J, h ∈ Pj , (5c)

J∑
j=1

kjr

min(t+dj−1,LFj)∑
q=max(t,EFj)

xjq ≤ Kr, r ∈ R, t = 1, . . . , T̄ , (5d)

xjt ∈ {0, 1}, j = 1, . . . , J, t = EFj , . . . , LFj (5e)

where xjt are the decision variables expressing whether an activity j is completed
on time t. The goal of RCPSP (5a) is to minimise the finishing time of the last
activity J . Constraint (5b) forces to schedule each activity once. Constraint (5c)
ensures the precedence relations. Constraint (5d) limits the use of renewable
resources.

Winner Determination Problem We consider the WSP for the WDP for-
malisation. There are a set of goods G and a set of bids B. Each bid b ∈ B is
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Table 4: Set of possible queries, the query constraints and the constraint encoding
of the WDP formalisation.

Question Query constraints Constraint
encoding, CQ

1. Why is bid b selected? veto b xb = 0
2. Why is bid b not selected? enforce b xb = 1
3. Why is bid b selected instead

of bid b′?
enforce b′, veto b xb′ = 1, xb = 0

4. Why is good g selected? veto g
∑

b∈B|g∈Gb
xb = 0

5. Why is good g not selected? enforce g
∑

b∈B|g∈Gb
xb = 1

6. Why is good g selected in-
stead of good g′?

enforce g′, veto g

∑
b∈B|g′∈Gb

xb = 1,∑
b∈B|g∈Gb

xb = 0

7. Why are goods g and g′ in the
same bid?

veto g and g′ in the
same selected bid

∑
b∈B|g′,g∈Gb

xb = 0

8. Why are goods g and g′ not
in the same bid?

enforce g and g′ in the
same bid

∑
b∈B|g′,g∈Gb

xb = 1

a tuple ⟨wb, Gb⟩, where wb is the value of the bid and Gb ⊆ G is the set of the
goods within the bid. We formalise the WSP as follows.

maximise Φ(x) =
∑
b∈B

wb · xb (6a)

s.t.
∑

b∈B|g∈Gb

xb ≤ 1, g ∈ G, (6b)

xb ∈ {0, 1}, b ∈ B, (6c)

where xb are the decision variables expressing whether a bid b is selected. The
goal of WSP (6a) is to maximise the weighted sum of the bids. Constraint (6b)
ensures that selected bids are pairwise disjoint.

A.2 Query Translation

In Table 4 we show possible questions tailored to the WDP.

A.3 IIS example

In Table 5, we provide the mathematical encoding of the constraints within the
IIS of the running example in the left table of Figure 2.

A.4 Theorem 1 proof

Theorem 1 Given an IIS, the dual graph of an IIS D is connected.
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Table 5: IIS from Example 3. We indicate the constraint type (in different
colours) and the mathematical encoding of the constraints.
Id Type Constraint Encoding

q Query
∑40

t=1 x24,t = 1

c1 Completion
∑LF16

t=EF16
x16,t = 1

c2 Completion
∑LF17

t=EF17
x17,t = 1

c3 Precedence
∑LF16

t=EF16
t · x16,t ≤

∑LF22
t=EF22

(t− d22) · x22,t

c4 Precedence
∑LF17

t=EF17
t · x17,t ≤

∑LF22
t=EF22

(t− d22) · x22,t

c5 Precedence
∑LF22

t=EF22
t · x22,t ≤

∑LF23
t=EF23

(t− d23) · x23,t

c6 Precedence
∑LF23

t=EF23
t · x23,t ≤

∑LF24
t=EF24

(t− d24) · x24,t

c7 Resource
∑J

j=1 kj,4
∑max(23+dj−1,LFj)

q=max(23,EFj)
xjq ≤ K4

Proof. We prove by contradiction that a disconnected IIS dual graph, i.e., a
graph with multiple disconnected components, is not possible to obtain due to
the infeasible and irreducible properties of an IIS (Definition 3).

Consider an IIS graph that is disconnected in two subgraphs, A = (CA, EA)
and B = (CB , EB) such that

CA ∪ CB = IIS,

CA ∩ CB = ∅,
SA ∩ SB = ∅,

where SA, SB are the scopes of the set of constraints CA and CB respectively.
Notice that, since the graph is disconnected, A and B subgraphs do not share
variables, i.e., SA ∩ SB = ∅. Then, since the subset of constraints CA and CB

are (disjoint) subsets of the IIS, they are feasible (see Definition 3). However,
since the both subsets of constraints have different variables (different domains),
the union of both constraint sets would not affect the feasibility status of the
resulting system of constraints. As a result, we would have a feasible IIS, which
is a contradiction in itself. Therefore, it is not possible to have a disconnected
IIS graph.

A.5 Extended WDP results

Figures 7 and 8 show the average running time and overhead for each query
type. We plot the overhead with “×” units, indicating the cost of computing the
IIS compared to the time to solve a problem instance. We organise the results in
6 plots with two distributions: matching (Fig. 7) and paths (Fig. 8); and three
instance sizes based on the number of bids |B|: small (|B| ∈ {20, 50}), medium
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Fig. 7: Average IIS Runtime (green) and Overhead (red) for different query types
for the WDP and distribution matching.

(|B| ∈ {100, 200}), and large (|B| ∈ {500, 1000}). In general, we observe that
as instance size increases, average running times and overheads increase too. In
addition, we notice that the order of query types according to empirical hardness
varies depending on the instance size and the distribution used to create the
instance.

Query type 8 is the easiest query to compute both for the paths and matching
distributions, while queries 7, 1, and 5 tend to be the most difficult. In detail,
we show that for small-size instances, computing explanations is much cheaper
than solving the problem, i.e., the overhead ≪ 1×, and fast —not more than
2 ·10−2 and 4 ·10−2 seconds on average for the matching and paths distributions
respectively—. For medium-size matching instances (Fig. 8b), the IIS is com-
puted in 6 seconds at most and the overhead increases up to 1.25×. However, for
the medium-size paths instances (Fig. 8b), the overhead increases significantly
—the overhead is up to 55× the solving time for the hardest queries— as well
as the runtime —the runtime is between 1 and 10 min on average—. Finally,
computing the IIS is hard for large instances since the overhead increases for
both distributions. However, the results for the large-size instances (Fig. 7c and
8c) indicate that matching instances are easier to explain than paths instances
since matching instances’ IISs are computed in minutes while paths instances’
IISs are computed in hours.
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Fig. 8: Average IIS Runtime (green) and Overhead (red) for different query types
for the WDP and distribution paths.

Figures 9 and 10 show the results of the scheduling and regions distributions
respectively. Similar to Figures 7 and 8, we organise the results in 6 plots with
two distributions and three instance sizes: small (|B| ∈ {20, 50}), medium (|B| ∈
{100, 200}), and large (|B| ∈ {500, 1000}).

Results for the instances generated with regions distribution show a similar
behaviour to distribution paths. Moreover, results for the instances generated
with scheduling distribution show that their explanations can be computed very
fast (< 0.1 seconds) for any size.

These differences in the IIS runtime confirm the findings of previous works
[26] since researchers have reported large differences in the empirical hardness
of solving instances from different distributions.
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Fig. 9: Average IIS Runtime (green) and Overhead (red) for different query types
for the WDP and distribution scheduling.
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Fig. 10: Average IIS Runtime (green) and Overhead (red) for different query
types for the WDP and distribution regions.


